Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Janssens
1
74 kgvan den Berg
3
78 kgCelano
7
65 kgLienhard
8
73 kgBol
9
83 kgTizza
12
58 kgGmelich Meijling
14
77 kgSchultz
15
68 kgEvrard
16
65 kgBonnamour
17
70 kgBudding
18
74 kgRiesebeek
20
78 kgZamparella
21
67 kgHagen
22
65 kgDe Bondt
24
73 kgParrinello
25
68 kgHavik
26
73 kgHalilaj
28
70 kgCullaigh
29
78 kgSpengler
30
78 kgTietema
31
74 kgKorsæth
32
84 kg
1
74 kgvan den Berg
3
78 kgCelano
7
65 kgLienhard
8
73 kgBol
9
83 kgTizza
12
58 kgGmelich Meijling
14
77 kgSchultz
15
68 kgEvrard
16
65 kgBonnamour
17
70 kgBudding
18
74 kgRiesebeek
20
78 kgZamparella
21
67 kgHagen
22
65 kgDe Bondt
24
73 kgParrinello
25
68 kgHavik
26
73 kgHalilaj
28
70 kgCullaigh
29
78 kgSpengler
30
78 kgTietema
31
74 kgKorsæth
32
84 kg
Weight (KG) →
Result →
84
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | JANSSENS Jimmy | 74 |
3 | VAN DEN BERG Julius | 78 |
7 | CELANO Danilo | 65 |
8 | LIENHARD Fabian | 73 |
9 | BOL Cees | 83 |
12 | TIZZA Marco | 58 |
14 | GMELICH MEIJLING Jarno | 77 |
15 | SCHULTZ Nick | 68 |
16 | EVRARD Laurent | 65 |
17 | BONNAMOUR Franck | 70 |
18 | BUDDING Martijn | 74 |
20 | RIESEBEEK Oscar | 78 |
21 | ZAMPARELLA Marco | 67 |
22 | HAGEN Carl Fredrik | 65 |
24 | DE BONDT Dries | 73 |
25 | PARRINELLO Antonino | 68 |
26 | HAVIK Piotr | 73 |
28 | HALILAJ Redi | 70 |
29 | CULLAIGH Gabriel | 78 |
30 | SPENGLER Lukas | 78 |
31 | TIETEMA Bas | 74 |
32 | KORSÆTH Truls Engen | 84 |