Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Veyhe
3
77 kgHayter
4
70 kgTouzé
5
69 kgFonseca
6
56 kgVermeulen
9
64 kgPolnický
10
68 kgKessler
11
78 kgPestiaux
12
58 kgPicoux
14
71 kgJakin
15
71 kgvan der Horst
17
62 kgWelten
18
81 kgGuldhammer
19
66 kgFrehen
22
66 kgvan der Tuuk
23
64 kgKrul
25
68 kgDernies
27
68 kgSimón
28
64 kg
3
77 kgHayter
4
70 kgTouzé
5
69 kgFonseca
6
56 kgVermeulen
9
64 kgPolnický
10
68 kgKessler
11
78 kgPestiaux
12
58 kgPicoux
14
71 kgJakin
15
71 kgvan der Horst
17
62 kgWelten
18
81 kgGuldhammer
19
66 kgFrehen
22
66 kgvan der Tuuk
23
64 kgKrul
25
68 kgDernies
27
68 kgSimón
28
64 kg
Weight (KG) →
Result →
81
56
3
28
# | Rider | Weight (KG) |
---|---|---|
3 | VEYHE Torkil | 77 |
4 | HAYTER Ethan | 70 |
5 | TOUZÉ Damien | 69 |
6 | FONSECA Armindo | 56 |
9 | VERMEULEN Emiel | 64 |
10 | POLNICKÝ Jiří | 68 |
11 | KESSLER Robert | 78 |
12 | PESTIAUX Yann | 58 |
14 | PICOUX Maximilien | 71 |
15 | JAKIN Alo | 71 |
17 | VAN DER HORST Dennis | 62 |
18 | WELTEN Bram | 81 |
19 | GULDHAMMER Rasmus | 66 |
22 | FREHEN Jeremy | 66 |
23 | VAN DER TUUK Danny | 64 |
25 | KRUL Stef | 68 |
27 | DERNIES Tom | 68 |
28 | SIMÓN Jordi | 64 |