Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hayter
2
70 kgWright
4
75 kgVeyhe
5
77 kgTouzé
7
69 kgČerný
8
75 kgFonseca
9
56 kgKrul
10
68 kgVermeulen
11
64 kgWelten
12
81 kgBostock
13
69 kgPicoux
15
71 kgPolnický
16
68 kgKessler
17
78 kgFrehen
18
66 kgPestiaux
19
58 kgJakin
21
71 kgvan der Horst
23
62 kgGuldhammer
25
66 kgvan der Tuuk
29
64 kgWalls
31
72 kgDernies
34
68 kgSimón
35
64 kgKragh Andersen
36
72 kg
2
70 kgWright
4
75 kgVeyhe
5
77 kgTouzé
7
69 kgČerný
8
75 kgFonseca
9
56 kgKrul
10
68 kgVermeulen
11
64 kgWelten
12
81 kgBostock
13
69 kgPicoux
15
71 kgPolnický
16
68 kgKessler
17
78 kgFrehen
18
66 kgPestiaux
19
58 kgJakin
21
71 kgvan der Horst
23
62 kgGuldhammer
25
66 kgvan der Tuuk
29
64 kgWalls
31
72 kgDernies
34
68 kgSimón
35
64 kgKragh Andersen
36
72 kg
Weight (KG) →
Result →
81
56
2
36
# | Rider | Weight (KG) |
---|---|---|
2 | HAYTER Ethan | 70 |
4 | WRIGHT Fred | 75 |
5 | VEYHE Torkil | 77 |
7 | TOUZÉ Damien | 69 |
8 | ČERNÝ Josef | 75 |
9 | FONSECA Armindo | 56 |
10 | KRUL Stef | 68 |
11 | VERMEULEN Emiel | 64 |
12 | WELTEN Bram | 81 |
13 | BOSTOCK Matthew | 69 |
15 | PICOUX Maximilien | 71 |
16 | POLNICKÝ Jiří | 68 |
17 | KESSLER Robert | 78 |
18 | FREHEN Jeremy | 66 |
19 | PESTIAUX Yann | 58 |
21 | JAKIN Alo | 71 |
23 | VAN DER HORST Dennis | 62 |
25 | GULDHAMMER Rasmus | 66 |
29 | VAN DER TUUK Danny | 64 |
31 | WALLS Matthew | 72 |
34 | DERNIES Tom | 68 |
35 | SIMÓN Jordi | 64 |
36 | KRAGH ANDERSEN Asbjørn | 72 |