Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Maldonado
1
57 kgGaillard
2
64 kgvan den Dool
4
68 kgBax
6
78 kgPetelin
8
67 kgKowalski
9
67 kgBarré
10
68 kgStacchiotti
11
70 kgFarazijn
12
73.5 kgZurlo
13
70 kgHurel
15
66 kgFrehen
16
66 kgCastrique
18
81 kgOnesti
19
71 kgLouvel
20
77 kgCabot
21
76 kgJakin
23
71 kgDopchie
24
65 kgGrondin
25
77 kgde Lange
28
58 kgYssaad
30
69 kgMarsman
31
75 kg
1
57 kgGaillard
2
64 kgvan den Dool
4
68 kgBax
6
78 kgPetelin
8
67 kgKowalski
9
67 kgBarré
10
68 kgStacchiotti
11
70 kgFarazijn
12
73.5 kgZurlo
13
70 kgHurel
15
66 kgFrehen
16
66 kgCastrique
18
81 kgOnesti
19
71 kgLouvel
20
77 kgCabot
21
76 kgJakin
23
71 kgDopchie
24
65 kgGrondin
25
77 kgde Lange
28
58 kgYssaad
30
69 kgMarsman
31
75 kg
Weight (KG) →
Result →
81
57
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | MALDONADO Anthony | 57 |
2 | GAILLARD Marlon | 64 |
4 | VAN DEN DOOL Jens | 68 |
6 | BAX Sjoerd | 78 |
8 | PETELIN Jan | 67 |
9 | KOWALSKI Dylan | 67 |
10 | BARRÉ Louis | 68 |
11 | STACCHIOTTI Riccardo | 70 |
12 | FARAZIJN Maxime | 73.5 |
13 | ZURLO Federico | 70 |
15 | HUREL Tony | 66 |
16 | FREHEN Jeremy | 66 |
18 | CASTRIQUE Jonas | 81 |
19 | ONESTI Emanuele | 71 |
20 | LOUVEL Matis | 77 |
21 | CABOT Jérémy | 76 |
23 | JAKIN Alo | 71 |
24 | DOPCHIE Felix | 65 |
25 | GRONDIN Donavan | 77 |
28 | DE LANGE Thijs | 58 |
30 | YSSAAD Yannis | 69 |
31 | MARSMAN Tim | 75 |