Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
van den Dool
1
68 kgBarré
3
68 kgRenard
6
74 kgLouvel
7
77 kgO'Mahony
8
69 kgWirtgen
9
63 kgMariault
10
58 kgCastrique
11
81 kgVandermeersch
14
75 kgAvoine
15
70 kgBouwmans
20
64 kgFrehen
21
66 kgVandepitte
25
80 kgWood
26
67 kgBurnett
27
71 kgTyrpekl
28
67 kgDopchie
30
65 kgBárta
31
79 kgMarsman
33
75 kgBootsveld
34
75 kgRex
38
82 kgLópez
39
70 kgHuens
40
74 kg
1
68 kgBarré
3
68 kgRenard
6
74 kgLouvel
7
77 kgO'Mahony
8
69 kgWirtgen
9
63 kgMariault
10
58 kgCastrique
11
81 kgVandermeersch
14
75 kgAvoine
15
70 kgBouwmans
20
64 kgFrehen
21
66 kgVandepitte
25
80 kgWood
26
67 kgBurnett
27
71 kgTyrpekl
28
67 kgDopchie
30
65 kgBárta
31
79 kgMarsman
33
75 kgBootsveld
34
75 kgRex
38
82 kgLópez
39
70 kgHuens
40
74 kg
Weight (KG) →
Result →
82
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN DOOL Jens | 68 |
3 | BARRÉ Louis | 68 |
6 | RENARD Alexis | 74 |
7 | LOUVEL Matis | 77 |
8 | O'MAHONY Darragh | 69 |
9 | WIRTGEN Luc | 63 |
10 | MARIAULT Axel | 58 |
11 | CASTRIQUE Jonas | 81 |
14 | VANDERMEERSCH Emilien | 75 |
15 | AVOINE Kévin | 70 |
20 | BOUWMANS Dylan | 64 |
21 | FREHEN Jeremy | 66 |
25 | VANDEPITTE Nathan | 80 |
26 | WOOD Reece | 67 |
27 | BURNETT Marcus | 71 |
28 | TYRPEKL Karel | 67 |
30 | DOPCHIE Felix | 65 |
31 | BÁRTA Tomáš | 79 |
33 | MARSMAN Tim | 75 |
34 | BOOTSVELD Jelle | 75 |
38 | REX Laurenz | 82 |
39 | LÓPEZ Diego | 70 |
40 | HUENS Rémi | 74 |