Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Fouché
1
71 kgBagües
2
67 kgGate
3
71 kgde Vries
4
66 kgLecamus-Lambert
5
79 kgCarisey
6
74 kgVan Niekerk
7
64 kgLeitão
8
65 kgSheehan
9
69 kgTesson
11
59 kgMaurelet
12
56 kgChristensen
13
63 kgAvoine
14
70 kgŠiškevičius
15
80 kgMcDunphy
16
70 kgde Rooij
17
77 kgLootens
18
74 kgArtz
21
71 kg
1
71 kgBagües
2
67 kgGate
3
71 kgde Vries
4
66 kgLecamus-Lambert
5
79 kgCarisey
6
74 kgVan Niekerk
7
64 kgLeitão
8
65 kgSheehan
9
69 kgTesson
11
59 kgMaurelet
12
56 kgChristensen
13
63 kgAvoine
14
70 kgŠiškevičius
15
80 kgMcDunphy
16
70 kgde Rooij
17
77 kgLootens
18
74 kgArtz
21
71 kg
Weight (KG) →
Result →
80
56
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | FOUCHÉ James | 71 |
2 | BAGÜES Aritz | 67 |
3 | GATE Aaron | 71 |
4 | DE VRIES Hartthijs | 66 |
5 | LECAMUS-LAMBERT Florentin | 79 |
6 | CARISEY Clément | 74 |
7 | VAN NIEKERK Morné | 64 |
8 | LEITÃO Iúri | 65 |
9 | SHEEHAN Riley | 69 |
11 | TESSON Jason | 59 |
12 | MAURELET Flavien | 56 |
13 | CHRISTENSEN Ryan | 63 |
14 | AVOINE Kévin | 70 |
15 | ŠIŠKEVIČIUS Evaldas | 80 |
16 | MCDUNPHY Conn | 70 |
17 | DE ROOIJ Jesse | 77 |
18 | LOOTENS Gust | 74 |
21 | ARTZ Huub | 71 |