Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Leitão
1
65 kgTesson
2
59 kgFouché
3
71 kgde Vries
4
66 kgBagües
5
67 kgGate
6
71 kgTabellion
7
72 kgLecamus-Lambert
10
79 kgSheehan
11
69 kgVan Niekerk
12
64 kgCarisey
13
74 kgLeroux
15
79 kgCañellas
16
66 kgAvoine
18
70 kgMaurelet
20
56 kgGonzález
21
68 kgChristensen
23
63 kgŠiškevičius
26
80 kgMcDunphy
27
70 kgde Rooij
28
77 kgLootens
29
74 kgDebeaumarché
31
75 kgArtz
32
71 kg
1
65 kgTesson
2
59 kgFouché
3
71 kgde Vries
4
66 kgBagües
5
67 kgGate
6
71 kgTabellion
7
72 kgLecamus-Lambert
10
79 kgSheehan
11
69 kgVan Niekerk
12
64 kgCarisey
13
74 kgLeroux
15
79 kgCañellas
16
66 kgAvoine
18
70 kgMaurelet
20
56 kgGonzález
21
68 kgChristensen
23
63 kgŠiškevičius
26
80 kgMcDunphy
27
70 kgde Rooij
28
77 kgLootens
29
74 kgDebeaumarché
31
75 kgArtz
32
71 kg
Weight (KG) →
Result →
80
56
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | LEITÃO Iúri | 65 |
2 | TESSON Jason | 59 |
3 | FOUCHÉ James | 71 |
4 | DE VRIES Hartthijs | 66 |
5 | BAGÜES Aritz | 67 |
6 | GATE Aaron | 71 |
7 | TABELLION Valentin | 72 |
10 | LECAMUS-LAMBERT Florentin | 79 |
11 | SHEEHAN Riley | 69 |
12 | VAN NIEKERK Morné | 64 |
13 | CARISEY Clément | 74 |
15 | LEROUX Samuel | 79 |
16 | CAÑELLAS Xavier | 66 |
18 | AVOINE Kévin | 70 |
20 | MAURELET Flavien | 56 |
21 | GONZÁLEZ David | 68 |
23 | CHRISTENSEN Ryan | 63 |
26 | ŠIŠKEVIČIUS Evaldas | 80 |
27 | MCDUNPHY Conn | 70 |
28 | DE ROOIJ Jesse | 77 |
29 | LOOTENS Gust | 74 |
31 | DEBEAUMARCHÉ Nicolas | 75 |
32 | ARTZ Huub | 71 |