Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 12.5 * weight - 816
This means that on average for every extra kilogram weight a rider loses 12.5 positions in the result.
van den Broek
2
70 kgJulien
3
70 kgWeulink
8
62 kgCañellas
9
66 kgTidball
10
70 kgMudgway
11
65 kgSchlegel
14
72 kgGougeard
15
70 kgFouché
19
71 kgKlevgård
20
74 kgGeorge
21
78 kgSchultz
22
62 kgBarbier
23
79 kgBárta
24
79 kgde Lange
26
58 kgLecamus-Lambert
27
79 kgWalsh
991
80 kg
2
70 kgJulien
3
70 kgWeulink
8
62 kgCañellas
9
66 kgTidball
10
70 kgMudgway
11
65 kgSchlegel
14
72 kgGougeard
15
70 kgFouché
19
71 kgKlevgård
20
74 kgGeorge
21
78 kgSchultz
22
62 kgBarbier
23
79 kgBárta
24
79 kgde Lange
26
58 kgLecamus-Lambert
27
79 kgWalsh
991
80 kg
Weight (KG) →
Result →
80
58
2
991
# | Rider | Weight (KG) |
---|---|---|
2 | VAN DEN BROEK Frank | 70 |
3 | JULIEN Matisse | 70 |
8 | WEULINK Meindert | 62 |
9 | CAÑELLAS Xavier | 66 |
10 | TIDBALL William | 70 |
11 | MUDGWAY Luke | 65 |
14 | SCHLEGEL Michal | 72 |
15 | GOUGEARD Alexis | 70 |
19 | FOUCHÉ James | 71 |
20 | KLEVGÅRD Kristian | 74 |
21 | GEORGE Alfred | 78 |
22 | SCHULTZ Elliot | 62 |
23 | BARBIER Rudy | 79 |
24 | BÁRTA Tomáš | 79 |
26 | DE LANGE Thijs | 58 |
27 | LECAMUS-LAMBERT Florentin | 79 |
991 | WALSH Liam | 80 |