Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Barbier
1
69 kgSkerl
2
80 kgNeuman
5
72 kgGeorge
6
78 kgVan Hautegem
7
64 kgFox
8
71 kgVlot
10
57 kgBarbier
12
79 kgAndreaus
15
68 kgAmann
18
76 kgKällberg
19
69 kgScherpenbergh
25
67 kgAagaard Hansen
26
77 kgLambrecht
27
75 kgAskey
28
70 kgHeijnen
29
66 kgWeulink
30
62 kgSenicourt
35
64 kg
1
69 kgSkerl
2
80 kgNeuman
5
72 kgGeorge
6
78 kgVan Hautegem
7
64 kgFox
8
71 kgVlot
10
57 kgBarbier
12
79 kgAndreaus
15
68 kgAmann
18
76 kgKällberg
19
69 kgScherpenbergh
25
67 kgAagaard Hansen
26
77 kgLambrecht
27
75 kgAskey
28
70 kgHeijnen
29
66 kgWeulink
30
62 kgSenicourt
35
64 kg
Weight (KG) →
Result →
80
57
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | BARBIER Pierre | 69 |
2 | SKERL Daniel | 80 |
5 | NEUMAN Dominik | 72 |
6 | GEORGE Alfred | 78 |
7 | VAN HAUTEGEM Leander | 64 |
8 | FOX Matthew | 71 |
10 | VLOT Mees | 57 |
12 | BARBIER Rudy | 79 |
15 | ANDREAUS Marco | 68 |
18 | AMANN Dominik | 76 |
19 | KÄLLBERG Axel | 69 |
25 | SCHERPENBERGH Tristan | 67 |
26 | AAGAARD HANSEN Tobias | 77 |
27 | LAMBRECHT Michiel | 75 |
28 | ASKEY Ben | 70 |
29 | HEIJNEN Philip | 66 |
30 | WEULINK Meindert | 62 |
35 | SENICOURT Kylian | 64 |