Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 29
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Sivakov
1
70 kgKurianov
2
74 kgRiou
3
68 kgMadouas
5
71 kgGaudu
6
53 kgWirtgen
9
77 kgGuernalec
14
71 kgDewulf
18
74 kgMaitre
23
71 kgvan den Berg
24
78 kgCornelisse
25
73.5 kgBouwmans
29
64 kgMaas
30
70 kgGeniets
51
73 kgVeltman
52
66 kgBouts
60
62 kgLagrée
69
66 kgMarlier
106
75 kg
1
70 kgKurianov
2
74 kgRiou
3
68 kgMadouas
5
71 kgGaudu
6
53 kgWirtgen
9
77 kgGuernalec
14
71 kgDewulf
18
74 kgMaitre
23
71 kgvan den Berg
24
78 kgCornelisse
25
73.5 kgBouwmans
29
64 kgMaas
30
70 kgGeniets
51
73 kgVeltman
52
66 kgBouts
60
62 kgLagrée
69
66 kgMarlier
106
75 kg
Weight (KG) →
Result →
78
53
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | SIVAKOV Pavel | 70 |
2 | KURIANOV Stepan | 74 |
3 | RIOU Alan | 68 |
5 | MADOUAS Valentin | 71 |
6 | GAUDU David | 53 |
9 | WIRTGEN Tom | 77 |
14 | GUERNALEC Thibault | 71 |
18 | DEWULF Stan | 74 |
23 | MAITRE Florian | 71 |
24 | VAN DEN BERG Julius | 78 |
25 | CORNELISSE Mitchell | 73.5 |
29 | BOUWMANS Dylan | 64 |
30 | MAAS Jan | 70 |
51 | GENIETS Kevin | 73 |
52 | VELTMAN Milan | 66 |
60 | BOUTS Jordy | 62 |
69 | LAGRÉE Adrien | 66 |
106 | MARLIER Alexandre | 75 |