Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 93
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Madouas
1
71 kgKurianov
2
74 kgSivakov
3
70 kgMaas
4
70 kgWirtgen
5
77 kgGuernalec
6
71 kgVeltman
8
66 kgRiou
10
68 kgGaudu
12
53 kgDewulf
13
74 kgvan den Berg
14
78 kgMaitre
16
71 kgGeniets
23
73 kgCornelisse
29
73.5 kgLagrée
53
66 kgBouts
78
62 kgBouwmans
79
64 kgMarlier
95
75 kg
1
71 kgKurianov
2
74 kgSivakov
3
70 kgMaas
4
70 kgWirtgen
5
77 kgGuernalec
6
71 kgVeltman
8
66 kgRiou
10
68 kgGaudu
12
53 kgDewulf
13
74 kgvan den Berg
14
78 kgMaitre
16
71 kgGeniets
23
73 kgCornelisse
29
73.5 kgLagrée
53
66 kgBouts
78
62 kgBouwmans
79
64 kgMarlier
95
75 kg
Weight (KG) →
Result →
78
53
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | MADOUAS Valentin | 71 |
2 | KURIANOV Stepan | 74 |
3 | SIVAKOV Pavel | 70 |
4 | MAAS Jan | 70 |
5 | WIRTGEN Tom | 77 |
6 | GUERNALEC Thibault | 71 |
8 | VELTMAN Milan | 66 |
10 | RIOU Alan | 68 |
12 | GAUDU David | 53 |
13 | DEWULF Stan | 74 |
14 | VAN DEN BERG Julius | 78 |
16 | MAITRE Florian | 71 |
23 | GENIETS Kevin | 73 |
29 | CORNELISSE Mitchell | 73.5 |
53 | LAGRÉE Adrien | 66 |
78 | BOUTS Jordy | 62 |
79 | BOUWMANS Dylan | 64 |
95 | MARLIER Alexandre | 75 |