Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 76
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Girdlestone
1
64 kgGee
2
72 kgSchelling
3
66 kgRiou
4
68 kgEekhoff
5
75 kgDe Plus
8
69 kgLagrée
9
66 kgMengoulas
10
66 kgRoberge
14
72 kgOttevanger
16
74 kgBouwmans
33
64 kgvan den Berg
34
72 kgRougier-Lagane
35
69 kgMoniquet
43
61 kgMariault
48
58 kgDekker
49
80 kgGuernalec
62
71 kgvan Niekerk
63
59 kg
1
64 kgGee
2
72 kgSchelling
3
66 kgRiou
4
68 kgEekhoff
5
75 kgDe Plus
8
69 kgLagrée
9
66 kgMengoulas
10
66 kgRoberge
14
72 kgOttevanger
16
74 kgBouwmans
33
64 kgvan den Berg
34
72 kgRougier-Lagane
35
69 kgMoniquet
43
61 kgMariault
48
58 kgDekker
49
80 kgGuernalec
62
71 kgvan Niekerk
63
59 kg
Weight (KG) →
Result →
80
58
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | GIRDLESTONE Keagan | 64 |
2 | GEE Derek | 72 |
3 | SCHELLING Ide | 66 |
4 | RIOU Alan | 68 |
5 | EEKHOFF Nils | 75 |
8 | DE PLUS Jasper | 69 |
9 | LAGRÉE Adrien | 66 |
10 | MENGOULAS Alex | 66 |
14 | ROBERGE Adam | 72 |
16 | OTTEVANGER Bas | 74 |
33 | BOUWMANS Dylan | 64 |
34 | VAN DEN BERG Lars | 72 |
35 | ROUGIER-LAGANE Christopher | 69 |
43 | MONIQUET Sylvain | 61 |
48 | MARIAULT Axel | 58 |
49 | DEKKER David | 80 |
62 | GUERNALEC Thibault | 71 |
63 | VAN NIEKERK Aidan | 59 |