Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Girdlestone
1
64 kgSchelling
2
66 kgGee
3
72 kgBouwmans
5
64 kgRiou
11
68 kgEekhoff
13
75 kgTesson
21
59 kgOttevanger
31
74 kgRougier-Lagane
34
69 kgDekker
36
80 kgEinhorn
39
72 kgGuernalec
43
71 kgvan den Berg
46
72 kgLagrée
47
66 kgMariault
52
58 kgMoniquet
56
61 kgvan Niekerk
59
59 kgMengoulas
64
66 kgRoberge
73
72 kgDe Plus
91
69 kgMarlier
142
75 kg
1
64 kgSchelling
2
66 kgGee
3
72 kgBouwmans
5
64 kgRiou
11
68 kgEekhoff
13
75 kgTesson
21
59 kgOttevanger
31
74 kgRougier-Lagane
34
69 kgDekker
36
80 kgEinhorn
39
72 kgGuernalec
43
71 kgvan den Berg
46
72 kgLagrée
47
66 kgMariault
52
58 kgMoniquet
56
61 kgvan Niekerk
59
59 kgMengoulas
64
66 kgRoberge
73
72 kgDe Plus
91
69 kgMarlier
142
75 kg
Weight (KG) →
Result →
80
58
1
142
# | Rider | Weight (KG) |
---|---|---|
1 | GIRDLESTONE Keagan | 64 |
2 | SCHELLING Ide | 66 |
3 | GEE Derek | 72 |
5 | BOUWMANS Dylan | 64 |
11 | RIOU Alan | 68 |
13 | EEKHOFF Nils | 75 |
21 | TESSON Jason | 59 |
31 | OTTEVANGER Bas | 74 |
34 | ROUGIER-LAGANE Christopher | 69 |
36 | DEKKER David | 80 |
39 | EINHORN Itamar | 72 |
43 | GUERNALEC Thibault | 71 |
46 | VAN DEN BERG Lars | 72 |
47 | LAGRÉE Adrien | 66 |
52 | MARIAULT Axel | 58 |
56 | MONIQUET Sylvain | 61 |
59 | VAN NIEKERK Aidan | 59 |
64 | MENGOULAS Alex | 66 |
73 | ROBERGE Adam | 72 |
91 | DE PLUS Jasper | 69 |
142 | MARLIER Alexandre | 75 |