Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 173
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Guernalec
1
71 kgGirdlestone
2
64 kgGee
3
72 kgSchelling
4
66 kgRiou
5
68 kgEekhoff
7
75 kgDe Plus
9
69 kgLagrée
11
66 kgMengoulas
12
66 kgRoberge
15
72 kgOttevanger
27
74 kgBouwmans
42
64 kgvan den Berg
43
72 kgRougier-Lagane
44
69 kgEinhorn
46
72 kgMoniquet
64
61 kgMariault
73
58 kgDekker
75
80 kgvan Niekerk
112
59 kgMarlier
133
75 kgTesson
145
59 kg
1
71 kgGirdlestone
2
64 kgGee
3
72 kgSchelling
4
66 kgRiou
5
68 kgEekhoff
7
75 kgDe Plus
9
69 kgLagrée
11
66 kgMengoulas
12
66 kgRoberge
15
72 kgOttevanger
27
74 kgBouwmans
42
64 kgvan den Berg
43
72 kgRougier-Lagane
44
69 kgEinhorn
46
72 kgMoniquet
64
61 kgMariault
73
58 kgDekker
75
80 kgvan Niekerk
112
59 kgMarlier
133
75 kgTesson
145
59 kg
Weight (KG) →
Result →
80
58
1
145
# | Rider | Weight (KG) |
---|---|---|
1 | GUERNALEC Thibault | 71 |
2 | GIRDLESTONE Keagan | 64 |
3 | GEE Derek | 72 |
4 | SCHELLING Ide | 66 |
5 | RIOU Alan | 68 |
7 | EEKHOFF Nils | 75 |
9 | DE PLUS Jasper | 69 |
11 | LAGRÉE Adrien | 66 |
12 | MENGOULAS Alex | 66 |
15 | ROBERGE Adam | 72 |
27 | OTTEVANGER Bas | 74 |
42 | BOUWMANS Dylan | 64 |
43 | VAN DEN BERG Lars | 72 |
44 | ROUGIER-LAGANE Christopher | 69 |
46 | EINHORN Itamar | 72 |
64 | MONIQUET Sylvain | 61 |
73 | MARIAULT Axel | 58 |
75 | DEKKER David | 80 |
112 | VAN NIEKERK Aidan | 59 |
133 | MARLIER Alexandre | 75 |
145 | TESSON Jason | 59 |