Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ottevanger
2
74 kgEekhoff
3
75 kgRiou
4
68 kgvan den Berg
10
72 kgBouwmans
11
64 kgMengoulas
19
66 kgMoniquet
24
61 kgLagrée
28
66 kgGee
32
72 kgRougier-Lagane
34
69 kgvan Niekerk
38
59 kgGirdlestone
39
64 kgMariault
40
58 kgDekker
48
80 kgRoberge
51
72 kgSchelling
60
66 kgDe Plus
67
69 kgGuernalec
75
71 kg
2
74 kgEekhoff
3
75 kgRiou
4
68 kgvan den Berg
10
72 kgBouwmans
11
64 kgMengoulas
19
66 kgMoniquet
24
61 kgLagrée
28
66 kgGee
32
72 kgRougier-Lagane
34
69 kgvan Niekerk
38
59 kgGirdlestone
39
64 kgMariault
40
58 kgDekker
48
80 kgRoberge
51
72 kgSchelling
60
66 kgDe Plus
67
69 kgGuernalec
75
71 kg
Weight (KG) →
Result →
80
58
2
75
# | Rider | Weight (KG) |
---|---|---|
2 | OTTEVANGER Bas | 74 |
3 | EEKHOFF Nils | 75 |
4 | RIOU Alan | 68 |
10 | VAN DEN BERG Lars | 72 |
11 | BOUWMANS Dylan | 64 |
19 | MENGOULAS Alex | 66 |
24 | MONIQUET Sylvain | 61 |
28 | LAGRÉE Adrien | 66 |
32 | GEE Derek | 72 |
34 | ROUGIER-LAGANE Christopher | 69 |
38 | VAN NIEKERK Aidan | 59 |
39 | GIRDLESTONE Keagan | 64 |
40 | MARIAULT Axel | 58 |
48 | DEKKER David | 80 |
51 | ROBERGE Adam | 72 |
60 | SCHELLING Ide | 66 |
67 | DE PLUS Jasper | 69 |
75 | GUERNALEC Thibault | 71 |