Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 158
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Scott
2
66 kgvan Sintmaartensdijk
4
77 kgLaurance
5
63 kgPortsmouth
6
70 kgKrijnsen
7
73 kgMijnsbergen
9
68 kgCortjens
12
76 kgCostiou
13
64 kgRoesems
15
70 kgLe Berre
20
68 kgChromy
23
63 kgThompson
26
66 kgMaclean
32
65 kgMahoudo
34
61 kgSemperena Oyarzabal
36
70 kgWood
40
64 kgStevant
48
65 kgBolgiani
57
61 kgVerschuren
66
54 kgCailliau
98
61 kgde Bruin
102
64 kgBettendorff
115
74 kg
2
66 kgvan Sintmaartensdijk
4
77 kgLaurance
5
63 kgPortsmouth
6
70 kgKrijnsen
7
73 kgMijnsbergen
9
68 kgCortjens
12
76 kgCostiou
13
64 kgRoesems
15
70 kgLe Berre
20
68 kgChromy
23
63 kgThompson
26
66 kgMaclean
32
65 kgMahoudo
34
61 kgSemperena Oyarzabal
36
70 kgWood
40
64 kgStevant
48
65 kgBolgiani
57
61 kgVerschuren
66
54 kgCailliau
98
61 kgde Bruin
102
64 kgBettendorff
115
74 kg
Weight (KG) →
Result →
77
54
2
115
# | Rider | Weight (KG) |
---|---|---|
2 | SCOTT Jared | 66 |
4 | VAN SINTMAARTENSDIJK Roel | 77 |
5 | LAURANCE Axel | 63 |
6 | PORTSMOUTH Tom | 70 |
7 | KRIJNSEN Jelte | 73 |
9 | MIJNSBERGEN Thomas | 68 |
12 | CORTJENS Ryan | 76 |
13 | COSTIOU Ewen | 64 |
15 | ROESEMS Siebe | 70 |
20 | LE BERRE Mathis | 68 |
23 | CHROMY Kyle | 63 |
26 | THOMPSON Reuben | 66 |
32 | MACLEAN Logan | 65 |
34 | MAHOUDO Nolann | 61 |
36 | SEMPERENA OYARZABAL Telmo | 70 |
40 | WOOD George | 64 |
48 | STEVANT Malo | 65 |
57 | BOLGIANI Gabriel | 61 |
66 | VERSCHUREN Killian | 54 |
98 | CAILLIAU Taïno | 61 |
102 | DE BRUIN Tjalle | 64 |
115 | BETTENDORFF Loïc | 74 |