Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.3 * weight + 254
This means that on average for every extra kilogram weight a rider loses -3.3 positions in the result.
Scott
3
66 kgvan Sintmaartensdijk
5
77 kgPortsmouth
6
70 kgLaurance
7
63 kgKrijnsen
9
73 kgMijnsbergen
10
68 kgCortjens
12
76 kgCostiou
13
64 kgRoesems
16
70 kgLe Berre
24
68 kgThompson
25
66 kgChromy
27
63 kgde Bruin
30
64 kgBettendorff
34
74 kgMaclean
43
65 kgWood
50
64 kgStevant
54
65 kgMahoudo
56
61 kgSemperena Oyarzabal
62
70 kgCailliau
83
61 kgVerschuren
87
54 kgBolgiani
102
61 kg
3
66 kgvan Sintmaartensdijk
5
77 kgPortsmouth
6
70 kgLaurance
7
63 kgKrijnsen
9
73 kgMijnsbergen
10
68 kgCortjens
12
76 kgCostiou
13
64 kgRoesems
16
70 kgLe Berre
24
68 kgThompson
25
66 kgChromy
27
63 kgde Bruin
30
64 kgBettendorff
34
74 kgMaclean
43
65 kgWood
50
64 kgStevant
54
65 kgMahoudo
56
61 kgSemperena Oyarzabal
62
70 kgCailliau
83
61 kgVerschuren
87
54 kgBolgiani
102
61 kg
Weight (KG) →
Result →
77
54
3
102
# | Rider | Weight (KG) |
---|---|---|
3 | SCOTT Jared | 66 |
5 | VAN SINTMAARTENSDIJK Roel | 77 |
6 | PORTSMOUTH Tom | 70 |
7 | LAURANCE Axel | 63 |
9 | KRIJNSEN Jelte | 73 |
10 | MIJNSBERGEN Thomas | 68 |
12 | CORTJENS Ryan | 76 |
13 | COSTIOU Ewen | 64 |
16 | ROESEMS Siebe | 70 |
24 | LE BERRE Mathis | 68 |
25 | THOMPSON Reuben | 66 |
27 | CHROMY Kyle | 63 |
30 | DE BRUIN Tjalle | 64 |
34 | BETTENDORFF Loïc | 74 |
43 | MACLEAN Logan | 65 |
50 | WOOD George | 64 |
54 | STEVANT Malo | 65 |
56 | MAHOUDO Nolann | 61 |
62 | SEMPERENA OYARZABAL Telmo | 70 |
83 | CAILLIAU Taïno | 61 |
87 | VERSCHUREN Killian | 54 |
102 | BOLGIANI Gabriel | 61 |