Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.2 * weight + 247
This means that on average for every extra kilogram weight a rider loses -3.2 positions in the result.
Scott
1
66 kgvan Sintmaartensdijk
3
77 kgMaclean
7
65 kgMijnsbergen
8
68 kgLe Berre
9
68 kgKrijnsen
16
73 kgPortsmouth
18
70 kgChromy
25
63 kgRoesems
26
70 kgde Bruin
27
64 kgCostiou
36
64 kgStevant
44
65 kgThompson
45
66 kgSemperena Oyarzabal
47
70 kgBolgiani
55
61 kgVerschuren
56
54 kgWood
76
64 kgMahoudo
80
61 kgLaurance
104
63 kg
1
66 kgvan Sintmaartensdijk
3
77 kgMaclean
7
65 kgMijnsbergen
8
68 kgLe Berre
9
68 kgKrijnsen
16
73 kgPortsmouth
18
70 kgChromy
25
63 kgRoesems
26
70 kgde Bruin
27
64 kgCostiou
36
64 kgStevant
44
65 kgThompson
45
66 kgSemperena Oyarzabal
47
70 kgBolgiani
55
61 kgVerschuren
56
54 kgWood
76
64 kgMahoudo
80
61 kgLaurance
104
63 kg
Weight (KG) →
Result →
77
54
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | SCOTT Jared | 66 |
3 | VAN SINTMAARTENSDIJK Roel | 77 |
7 | MACLEAN Logan | 65 |
8 | MIJNSBERGEN Thomas | 68 |
9 | LE BERRE Mathis | 68 |
16 | KRIJNSEN Jelte | 73 |
18 | PORTSMOUTH Tom | 70 |
25 | CHROMY Kyle | 63 |
26 | ROESEMS Siebe | 70 |
27 | DE BRUIN Tjalle | 64 |
36 | COSTIOU Ewen | 64 |
44 | STEVANT Malo | 65 |
45 | THOMPSON Reuben | 66 |
47 | SEMPERENA OYARZABAL Telmo | 70 |
55 | BOLGIANI Gabriel | 61 |
56 | VERSCHUREN Killian | 54 |
76 | WOOD George | 64 |
80 | MAHOUDO Nolann | 61 |
104 | LAURANCE Axel | 63 |