Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Golliker
1
67 kgAugust
2
57 kgBasset
4
69 kgHue
7
64 kgPeace
8
64 kgDahlblom
11
62 kgVergouw
13
73 kgLightfoot
14
57 kgDe Meijts
15
71 kgTapia
21
56 kgvan der Werff
31
60 kgTomkinson
32
61 kgEkman
35
70 kgRobbins
39
66 kgStokes
44
68 kgCushway
49
67 kgKranenburg
53
62 kgDeschamps
54
56 kgSmith
68
64 kgParham
72
68 kgLindén
75
56 kg
1
67 kgAugust
2
57 kgBasset
4
69 kgHue
7
64 kgPeace
8
64 kgDahlblom
11
62 kgVergouw
13
73 kgLightfoot
14
57 kgDe Meijts
15
71 kgTapia
21
56 kgvan der Werff
31
60 kgTomkinson
32
61 kgEkman
35
70 kgRobbins
39
66 kgStokes
44
68 kgCushway
49
67 kgKranenburg
53
62 kgDeschamps
54
56 kgSmith
68
64 kgParham
72
68 kgLindén
75
56 kg
Weight (KG) →
Result →
73
56
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | GOLLIKER Joshua | 67 |
2 | AUGUST Andrew | 57 |
4 | BASSET Pierre-Henry | 69 |
7 | HUE Antoine | 64 |
8 | PEACE Oliver | 64 |
11 | DAHLBLOM Acke | 62 |
13 | VERGOUW Julian | 73 |
14 | LIGHTFOOT Mark | 57 |
15 | DE MEIJTS Matis | 71 |
21 | TAPIA Adur | 56 |
31 | VAN DER WERFF Thom | 60 |
32 | TOMKINSON Tyler | 61 |
35 | EKMAN Erik | 70 |
39 | ROBBINS Jacques | 66 |
44 | STOKES Ben | 68 |
49 | CUSHWAY Maximilian | 67 |
53 | KRANENBURG Joris | 62 |
54 | DESCHAMPS Christian | 56 |
68 | SMITH Brockton | 64 |
72 | PARHAM Darren | 68 |
75 | LINDÉN Rasmus | 56 |