Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 77
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Basset
1
69 kgAugust
3
57 kgVergouw
4
73 kgHue
5
64 kgDe Meijts
9
71 kgLightfoot
10
57 kgDahlblom
13
62 kgPeace
14
64 kgTapia
18
56 kgGolliker
19
67 kgRobbins
22
66 kgTomkinson
25
61 kgvan der Werff
26
60 kgEkman
38
70 kgStokes
43
68 kgCushway
61
67 kgKranenburg
66
62 kgDeschamps
67
56 kgLindén
69
56 kgParham
70
68 kgSmith
71
64 kg
1
69 kgAugust
3
57 kgVergouw
4
73 kgHue
5
64 kgDe Meijts
9
71 kgLightfoot
10
57 kgDahlblom
13
62 kgPeace
14
64 kgTapia
18
56 kgGolliker
19
67 kgRobbins
22
66 kgTomkinson
25
61 kgvan der Werff
26
60 kgEkman
38
70 kgStokes
43
68 kgCushway
61
67 kgKranenburg
66
62 kgDeschamps
67
56 kgLindén
69
56 kgParham
70
68 kgSmith
71
64 kg
Weight (KG) →
Result →
73
56
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | BASSET Pierre-Henry | 69 |
3 | AUGUST Andrew | 57 |
4 | VERGOUW Julian | 73 |
5 | HUE Antoine | 64 |
9 | DE MEIJTS Matis | 71 |
10 | LIGHTFOOT Mark | 57 |
13 | DAHLBLOM Acke | 62 |
14 | PEACE Oliver | 64 |
18 | TAPIA Adur | 56 |
19 | GOLLIKER Joshua | 67 |
22 | ROBBINS Jacques | 66 |
25 | TOMKINSON Tyler | 61 |
26 | VAN DER WERFF Thom | 60 |
38 | EKMAN Erik | 70 |
43 | STOKES Ben | 68 |
61 | CUSHWAY Maximilian | 67 |
66 | KRANENBURG Joris | 62 |
67 | DESCHAMPS Christian | 56 |
69 | LINDÉN Rasmus | 56 |
70 | PARHAM Darren | 68 |
71 | SMITH Brockton | 64 |