Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Stoneham
1
67 kgSolen
9
67 kgLightfoot
10
57 kgLarsson
12
60 kgMartínez
19
59 kgGraff
20
68 kgPeace
35
64 kgDerksen
37
69 kgMolenaar
51
68 kgTabiner
55
88 kgStokes
56
68 kgThompson
68
72 kgRenaud-Tremblay
76
60 kgParham
90
68 kgGiammarella
91
62 kgNisbet
100
60 kgMartín
128
56 kgKinsella
146
70 kg
1
67 kgSolen
9
67 kgLightfoot
10
57 kgLarsson
12
60 kgMartínez
19
59 kgGraff
20
68 kgPeace
35
64 kgDerksen
37
69 kgMolenaar
51
68 kgTabiner
55
88 kgStokes
56
68 kgThompson
68
72 kgRenaud-Tremblay
76
60 kgParham
90
68 kgGiammarella
91
62 kgNisbet
100
60 kgMartín
128
56 kgKinsella
146
70 kg
Weight (KG) →
Result →
88
56
1
146
# | Rider | Weight (KG) |
---|---|---|
1 | STONEHAM Angus | 67 |
9 | SOLEN Keije | 67 |
10 | LIGHTFOOT Mark | 57 |
12 | LARSSON Linus | 60 |
19 | MARTÍNEZ Rafael | 59 |
20 | GRAFF William | 68 |
35 | PEACE Oliver | 64 |
37 | DERKSEN Jente | 69 |
51 | MOLENAAR Ko | 68 |
55 | TABINER Raphael John | 88 |
56 | STOKES Ben | 68 |
68 | THOMPSON David | 72 |
76 | RENAUD-TREMBLAY Sasha | 60 |
90 | PARHAM Darren | 68 |
91 | GIAMMARELLA Adamo | 62 |
100 | NISBET Cormac | 60 |
128 | MARTÍN Marco | 56 |
146 | KINSELLA Tom | 70 |