Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 61
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Stoneham
4
67 kgNisbet
8
60 kgThompson
9
72 kgStokes
11
68 kgMolenaar
12
68 kgLarsson
13
60 kgPeace
17
64 kgLightfoot
18
57 kgRenaud-Tremblay
25
60 kgMartínez
32
59 kgVandevorst
33
74 kgParham
57
68 kgGiammarella
65
62 kgSolen
68
67 kgGraff
72
68 kgKinsella
102
70 kgTabiner
111
88 kgMartín
121
56 kgDerksen
128
69 kg
4
67 kgNisbet
8
60 kgThompson
9
72 kgStokes
11
68 kgMolenaar
12
68 kgLarsson
13
60 kgPeace
17
64 kgLightfoot
18
57 kgRenaud-Tremblay
25
60 kgMartínez
32
59 kgVandevorst
33
74 kgParham
57
68 kgGiammarella
65
62 kgSolen
68
67 kgGraff
72
68 kgKinsella
102
70 kgTabiner
111
88 kgMartín
121
56 kgDerksen
128
69 kg
Weight (KG) →
Result →
88
56
4
128
# | Rider | Weight (KG) |
---|---|---|
4 | STONEHAM Angus | 67 |
8 | NISBET Cormac | 60 |
9 | THOMPSON David | 72 |
11 | STOKES Ben | 68 |
12 | MOLENAAR Ko | 68 |
13 | LARSSON Linus | 60 |
17 | PEACE Oliver | 64 |
18 | LIGHTFOOT Mark | 57 |
25 | RENAUD-TREMBLAY Sasha | 60 |
32 | MARTÍNEZ Rafael | 59 |
33 | VANDEVORST Nio | 74 |
57 | PARHAM Darren | 68 |
65 | GIAMMARELLA Adamo | 62 |
68 | SOLEN Keije | 67 |
72 | GRAFF William | 68 |
102 | KINSELLA Tom | 70 |
111 | TABINER Raphael John | 88 |
121 | MARTÍN Marco | 56 |
128 | DERKSEN Jente | 69 |