Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 121
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Asselman
2
69 kgNovikov
7
77 kgSchulting
10
70 kgHuizenga
13
72 kgGoesinnen
14
75 kgDumoulin
20
69 kgGmelich Meijling
23
77 kgLammertink
28
61 kgKelderman
29
65 kgOostlander
30
78 kgKoning
33
77 kgThill
37
73 kgOlivier
38
64 kgWestmattelmann
46
75 kgvan der Lijke
48
61 kgAriesen
52
70 kgGoos
56
65 kgZangerle
58
63 kgLjungblad
59
70 kgStroetinga
68
69 kg
2
69 kgNovikov
7
77 kgSchulting
10
70 kgHuizenga
13
72 kgGoesinnen
14
75 kgDumoulin
20
69 kgGmelich Meijling
23
77 kgLammertink
28
61 kgKelderman
29
65 kgOostlander
30
78 kgKoning
33
77 kgThill
37
73 kgOlivier
38
64 kgWestmattelmann
46
75 kgvan der Lijke
48
61 kgAriesen
52
70 kgGoos
56
65 kgZangerle
58
63 kgLjungblad
59
70 kgStroetinga
68
69 kg
Weight (KG) →
Result →
78
61
2
68
# | Rider | Weight (KG) |
---|---|---|
2 | ASSELMAN Jesper | 69 |
7 | NOVIKOV Nikita | 77 |
10 | SCHULTING Peter | 70 |
13 | HUIZENGA Jenning | 72 |
14 | GOESINNEN Floris | 75 |
20 | DUMOULIN Tom | 69 |
23 | GMELICH MEIJLING Jarno | 77 |
28 | LAMMERTINK Maurits | 61 |
29 | KELDERMAN Wilco | 65 |
30 | OOSTLANDER Sander | 78 |
33 | KONING Peter | 77 |
37 | THILL Tom | 73 |
38 | OLIVIER Daan | 64 |
46 | WESTMATTELMANN Daniel | 75 |
48 | VAN DER LIJKE Nick | 61 |
52 | ARIESEN Johim | 70 |
56 | GOOS Marc | 65 |
58 | ZANGERLE Joel | 63 |
59 | LJUNGBLAD Jonas | 70 |
68 | STROETINGA Wim | 69 |