Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 87
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Zabirova
1
65 kgZijlaard-van Moorsel
3
62 kgMelchers
4
59 kgGunnewijk
7
67 kgWood
8
56 kgKiesanowski
9
56 kgClignet
12
60 kgDoppmann
13
55 kgCantele
14
58 kgLjungskog
15
57 kgPučinskaitė
16
54 kgDahle
20
64 kgKupfernagel
26
68 kgPitel
30
52 kgZabelinskaya
33
52 kgSchleicher
37
58 kgBeltman
41
68 kgMarsal
46
53 kgReekie-may
48
53 kgRuano
55
51 kg
1
65 kgZijlaard-van Moorsel
3
62 kgMelchers
4
59 kgGunnewijk
7
67 kgWood
8
56 kgKiesanowski
9
56 kgClignet
12
60 kgDoppmann
13
55 kgCantele
14
58 kgLjungskog
15
57 kgPučinskaitė
16
54 kgDahle
20
64 kgKupfernagel
26
68 kgPitel
30
52 kgZabelinskaya
33
52 kgSchleicher
37
58 kgBeltman
41
68 kgMarsal
46
53 kgReekie-may
48
53 kgRuano
55
51 kg
Weight (KG) →
Result →
68
51
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | ZABIROVA Zulfiya | 65 |
3 | ZIJLAARD-VAN MOORSEL Leontien | 62 |
4 | MELCHERS Mirjam | 59 |
7 | GUNNEWIJK Loes | 67 |
8 | WOOD Oenone | 56 |
9 | KIESANOWSKI Joanne | 56 |
12 | CLIGNET Marion | 60 |
13 | DOPPMANN Priska | 55 |
14 | CANTELE Noemi | 58 |
15 | LJUNGSKOG Susanne | 57 |
16 | PUČINSKAITĖ Edita | 54 |
20 | DAHLE Gunn-Rita | 64 |
26 | KUPFERNAGEL Hanka | 68 |
30 | PITEL Edwige | 52 |
33 | ZABELINSKAYA Olga | 52 |
37 | SCHLEICHER Regina | 58 |
41 | BELTMAN Chantal | 68 |
46 | MARSAL Catherine | 53 |
48 | REEKIE-MAY Roz | 53 |
55 | RUANO Dori | 51 |