Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Grabsch
1
78 kgvan Bon
3
72 kgHaselbacher
4
69 kgGuidi
5
73 kgRoberts
6
71 kgWeissinger
7
74 kgHuzarski
8
69 kgLudewig
9
75 kgSchreck
10
76 kgGrabsch
11
81 kgSchröder
12
64 kgvan Hummel
13
64 kgLang
14
77 kgBak
15
76 kgVogels
16
75 kgMoos
17
64 kgBaumann
18
72 kgBertolini
20
63 kgMüller
23
69 kgRohregger
25
63 kgKlostergaard
26
69 kgTotschnig
27
62 kgJalabert
28
68 kg
1
78 kgvan Bon
3
72 kgHaselbacher
4
69 kgGuidi
5
73 kgRoberts
6
71 kgWeissinger
7
74 kgHuzarski
8
69 kgLudewig
9
75 kgSchreck
10
76 kgGrabsch
11
81 kgSchröder
12
64 kgvan Hummel
13
64 kgLang
14
77 kgBak
15
76 kgVogels
16
75 kgMoos
17
64 kgBaumann
18
72 kgBertolini
20
63 kgMüller
23
69 kgRohregger
25
63 kgKlostergaard
26
69 kgTotschnig
27
62 kgJalabert
28
68 kg
Weight (KG) →
Result →
81
62
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | GRABSCH Bert | 78 |
3 | VAN BON Léon | 72 |
4 | HASELBACHER René | 69 |
5 | GUIDI Fabrizio | 73 |
6 | ROBERTS Luke | 71 |
7 | WEISSINGER René | 74 |
8 | HUZARSKI Bartosz | 69 |
9 | LUDEWIG Jörg | 75 |
10 | SCHRECK Stephan | 76 |
11 | GRABSCH Ralf | 81 |
12 | SCHRÖDER Björn | 64 |
13 | VAN HUMMEL Kenny | 64 |
14 | LANG Sebastian | 77 |
15 | BAK Lars Ytting | 76 |
16 | VOGELS Henk | 75 |
17 | MOOS Alexandre | 64 |
18 | BAUMANN Eric | 72 |
20 | BERTOLINI Alessandro | 63 |
23 | MÜLLER Christian | 69 |
25 | ROHREGGER Thomas | 63 |
26 | KLOSTERGAARD Kasper | 69 |
27 | TOTSCHNIG Georg | 62 |
28 | JALABERT Nicolas | 68 |