Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 33
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Voigt
1
76 kgRetschke
2
66 kgAmorison
3
70 kgKroon
4
67 kgKopp
5
68 kgDe Waele
6
71 kgRogina
7
70 kgHoffmann
8
65 kgGolčer
11
66.5 kgKrauß
12
81 kgHondo
13
73 kgPoitschke
15
73 kgCurvers
16
73 kgBožič
17
70 kgLangeveld
18
67 kgIngels
19
70 kgMamos
20
72 kgMarin
21
67 kgZamana
22
74 kgLang
25
77 kgLjungqvist
26
73 kgHaussler
27
74 kg
1
76 kgRetschke
2
66 kgAmorison
3
70 kgKroon
4
67 kgKopp
5
68 kgDe Waele
6
71 kgRogina
7
70 kgHoffmann
8
65 kgGolčer
11
66.5 kgKrauß
12
81 kgHondo
13
73 kgPoitschke
15
73 kgCurvers
16
73 kgBožič
17
70 kgLangeveld
18
67 kgIngels
19
70 kgMamos
20
72 kgMarin
21
67 kgZamana
22
74 kgLang
25
77 kgLjungqvist
26
73 kgHaussler
27
74 kg
Weight (KG) →
Result →
81
65
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VOIGT Jens | 76 |
2 | RETSCHKE Robert | 66 |
3 | AMORISON Frédéric | 70 |
4 | KROON Karsten | 67 |
5 | KOPP David | 68 |
6 | DE WAELE Bert | 71 |
7 | ROGINA Radoslav | 70 |
8 | HOFFMANN Erik | 65 |
11 | GOLČER Jure | 66.5 |
12 | KRAUß Sven | 81 |
13 | HONDO Danilo | 73 |
15 | POITSCHKE Enrico | 73 |
16 | CURVERS Roy | 73 |
17 | BOŽIČ Borut | 70 |
18 | LANGEVELD Sebastian | 67 |
19 | INGELS Nick | 70 |
20 | MAMOS Philipp | 72 |
21 | MARIN Matej | 67 |
22 | ZAMANA Cezary | 74 |
25 | LANG Sebastian | 77 |
26 | LJUNGQVIST Marcus | 73 |
27 | HAUSSLER Heinrich | 74 |