Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Pedersen
1
62 kgBaumann
2
72 kgBrändle
5
80 kgGretsch
9
69 kgGottfried
10
60 kgPöll
12
60 kgGuldhammer
16
66 kgOostlander
17
78 kgStauff
19
82 kgSchillinger
33
72 kgLammertink
34
61 kgJaniaczyk
41
68 kgTaciak
51
68 kgWestmattelmann
52
75 kgWitecki
53
70 kgGlasner
63
72 kg
1
62 kgBaumann
2
72 kgBrändle
5
80 kgGretsch
9
69 kgGottfried
10
60 kgPöll
12
60 kgGuldhammer
16
66 kgOostlander
17
78 kgStauff
19
82 kgSchillinger
33
72 kgLammertink
34
61 kgJaniaczyk
41
68 kgTaciak
51
68 kgWestmattelmann
52
75 kgWitecki
53
70 kgGlasner
63
72 kg
Weight (KG) →
Result →
82
60
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Martin | 62 |
2 | BAUMANN Eric | 72 |
5 | BRÄNDLE Matthias | 80 |
9 | GRETSCH Patrick | 69 |
10 | GOTTFRIED Alexander | 60 |
12 | PÖLL Stefan | 60 |
16 | GULDHAMMER Rasmus | 66 |
17 | OOSTLANDER Sander | 78 |
19 | STAUFF Andreas | 82 |
33 | SCHILLINGER Andreas | 72 |
34 | LAMMERTINK Maurits | 61 |
41 | JANIACZYK Błażej | 68 |
51 | TACIAK Mateusz | 68 |
52 | WESTMATTELMANN Daniel | 75 |
53 | WITECKI Mariusz | 70 |
63 | GLASNER Björn | 72 |