Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 18.8 * weight - 608
This means that on average for every extra kilogram weight a rider loses 18.8 positions in the result.
Museeuw
1
71 kgZabel
2
69 kgEtxebarria
3
55 kgSkibby
5
70 kgEkimov
6
69 kgFernández
7
61 kgLivingston
8
70 kgPlanckaert
990
70 kgEdo
990
64 kgSmetanine
990
69 kgFarazijn
990
69 kgHincapie
990
83 kgHamilton
990
65 kgIvanov
990
73 kgOsa
990
65 kgCabello
990
72 kgDomínguez
990
64 kgBomans
990
74 kgPeeters
990
76 kgBeltrán
990
60 kgGonzález
990
70 kgGamito
990
66 kg
1
71 kgZabel
2
69 kgEtxebarria
3
55 kgSkibby
5
70 kgEkimov
6
69 kgFernández
7
61 kgLivingston
8
70 kgPlanckaert
990
70 kgEdo
990
64 kgSmetanine
990
69 kgFarazijn
990
69 kgHincapie
990
83 kgHamilton
990
65 kgIvanov
990
73 kgOsa
990
65 kgCabello
990
72 kgDomínguez
990
64 kgBomans
990
74 kgPeeters
990
76 kgBeltrán
990
60 kgGonzález
990
70 kgGamito
990
66 kg
Weight (KG) →
Result →
83
55
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MUSEEUW Johan | 71 |
2 | ZABEL Erik | 69 |
3 | ETXEBARRIA David | 55 |
5 | SKIBBY Jesper | 70 |
6 | EKIMOV Viatcheslav | 69 |
7 | FERNÁNDEZ Bingen | 61 |
8 | LIVINGSTON Kevin | 70 |
990 | PLANCKAERT Jo | 70 |
990 | EDO Ángel | 64 |
990 | SMETANINE Serguei | 69 |
990 | FARAZIJN Peter | 69 |
990 | HINCAPIE George | 83 |
990 | HAMILTON Tyler | 65 |
990 | IVANOV Sergei | 73 |
990 | OSA Unai | 65 |
990 | CABELLO Francisco | 72 |
990 | DOMÍNGUEZ Juan Carlos | 64 |
990 | BOMANS Carlo | 74 |
990 | PEETERS Wilfried | 76 |
990 | BELTRÁN Manuel | 60 |
990 | GONZÁLEZ Santos | 70 |
990 | GAMITO Vitor | 66 |