Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 296
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Museeuw
1
71 kgZabel
2
69 kgEdo
3
64 kgEkimov
4
69 kgPlanckaert
5
70 kgEtxebarria
6
55 kgHincapie
8
83 kgHamilton
9
65 kgSmetanine
10
69 kgIvanov
13
73 kgOsa
14
65 kgFernández
15
61 kgCabello
17
72 kgDomínguez
18
64 kgFarazijn
19
69 kgBomans
20
74 kgPeeters
990
76 kgBeltrán
990
60 kgGonzález
990
70 kgGamito
990
66 kg
1
71 kgZabel
2
69 kgEdo
3
64 kgEkimov
4
69 kgPlanckaert
5
70 kgEtxebarria
6
55 kgHincapie
8
83 kgHamilton
9
65 kgSmetanine
10
69 kgIvanov
13
73 kgOsa
14
65 kgFernández
15
61 kgCabello
17
72 kgDomínguez
18
64 kgFarazijn
19
69 kgBomans
20
74 kgPeeters
990
76 kgBeltrán
990
60 kgGonzález
990
70 kgGamito
990
66 kg
Weight (KG) →
Result →
83
55
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MUSEEUW Johan | 71 |
2 | ZABEL Erik | 69 |
3 | EDO Ángel | 64 |
4 | EKIMOV Viatcheslav | 69 |
5 | PLANCKAERT Jo | 70 |
6 | ETXEBARRIA David | 55 |
8 | HINCAPIE George | 83 |
9 | HAMILTON Tyler | 65 |
10 | SMETANINE Serguei | 69 |
13 | IVANOV Sergei | 73 |
14 | OSA Unai | 65 |
15 | FERNÁNDEZ Bingen | 61 |
17 | CABELLO Francisco | 72 |
18 | DOMÍNGUEZ Juan Carlos | 64 |
19 | FARAZIJN Peter | 69 |
20 | BOMANS Carlo | 74 |
990 | PEETERS Wilfried | 76 |
990 | BELTRÁN Manuel | 60 |
990 | GONZÁLEZ Santos | 70 |
990 | GAMITO Vitor | 66 |