Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Cabello
1
72 kgFarazijn
3
69 kgHorrillo
4
76 kgBettini
6
58 kgRebollo
7
61 kgVandenbroucke
8
67 kgBartoli
9
65 kgGarmendia
10
68 kgPretot
11
71 kgEtxebarria
12
55 kgGonzález de Galdeano
14
73 kgJørgensen
15
60 kgBlanco
16
66 kgDi Grande
17
58 kgJalabert
21
68 kgZanini
22
80 kgDurand
23
76 kgOsa
24
65 kgDe Wolf
25
67 kgBoven
26
65 kg
1
72 kgFarazijn
3
69 kgHorrillo
4
76 kgBettini
6
58 kgRebollo
7
61 kgVandenbroucke
8
67 kgBartoli
9
65 kgGarmendia
10
68 kgPretot
11
71 kgEtxebarria
12
55 kgGonzález de Galdeano
14
73 kgJørgensen
15
60 kgBlanco
16
66 kgDi Grande
17
58 kgJalabert
21
68 kgZanini
22
80 kgDurand
23
76 kgOsa
24
65 kgDe Wolf
25
67 kgBoven
26
65 kg
Weight (KG) →
Result →
80
55
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | CABELLO Francisco | 72 |
3 | FARAZIJN Peter | 69 |
4 | HORRILLO Pedro | 76 |
6 | BETTINI Paolo | 58 |
7 | REBOLLO José Luis | 61 |
8 | VANDENBROUCKE Frank | 67 |
9 | BARTOLI Michele | 65 |
10 | GARMENDIA Aitor | 68 |
11 | PRETOT Arnaud | 71 |
12 | ETXEBARRIA David | 55 |
14 | GONZÁLEZ DE GALDEANO Igor | 73 |
15 | JØRGENSEN René | 60 |
16 | BLANCO Santiago | 66 |
17 | DI GRANDE Giuseppe | 58 |
21 | JALABERT Nicolas | 68 |
22 | ZANINI Stefano | 80 |
23 | DURAND Jacky | 76 |
24 | OSA Unai | 65 |
25 | DE WOLF Steve | 67 |
26 | BOVEN Jan | 65 |