Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Dumoulin
1
69 kgMaté
2
68 kgClement
3
66 kgQuintana
4
58 kgDe Clercq
5
67 kgVan den Broeck
6
69 kgIzagirre
7
60 kgVan Hecke
8
69 kgMollema
9
64 kgPlaza
10
77 kgEdet
11
60 kgFlorencio
13
59 kgMoreno
15
63 kgvan Leijen
16
73 kgAntón
17
64 kgSeeldraeyers
18
60 kgGarate
19
62 kgMas
20
69 kgValverde
21
61 kgVan De Walle
22
74 kgLigthart
23
72 kg
1
69 kgMaté
2
68 kgClement
3
66 kgQuintana
4
58 kgDe Clercq
5
67 kgVan den Broeck
6
69 kgIzagirre
7
60 kgVan Hecke
8
69 kgMollema
9
64 kgPlaza
10
77 kgEdet
11
60 kgFlorencio
13
59 kgMoreno
15
63 kgvan Leijen
16
73 kgAntón
17
64 kgSeeldraeyers
18
60 kgGarate
19
62 kgMas
20
69 kgValverde
21
61 kgVan De Walle
22
74 kgLigthart
23
72 kg
Weight (KG) →
Result →
77
58
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DUMOULIN Tom | 69 |
2 | MATÉ Luis Ángel | 68 |
3 | CLEMENT Stef | 66 |
4 | QUINTANA Nairo | 58 |
5 | DE CLERCQ Bart | 67 |
6 | VAN DEN BROECK Jurgen | 69 |
7 | IZAGIRRE Ion | 60 |
8 | VAN HECKE Preben | 69 |
9 | MOLLEMA Bauke | 64 |
10 | PLAZA Rubén | 77 |
11 | EDET Nicolas | 60 |
13 | FLORENCIO Xavier | 59 |
15 | MORENO Javier | 63 |
16 | VAN LEIJEN Joost | 73 |
17 | ANTÓN Igor | 64 |
18 | SEELDRAEYERS Kevin | 60 |
19 | GARATE Juan Manuel | 62 |
20 | MAS Lluís | 69 |
21 | VALVERDE Alejandro | 61 |
22 | VAN DE WALLE Jurgen | 74 |
23 | LIGTHART Pim | 72 |