Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Valverde
1
61 kgHivert
2
62 kgVan den Broeck
3
69 kgMollema
4
64 kgŠpilak
5
68 kgFarrar
6
73 kgDe Clercq
7
67 kgPonzi
8
63 kgRebellin
9
63 kgGretsch
10
69 kgClement
11
66 kgFuglsang
12
67 kgArmée
13
72 kgGesink
14
70 kgBelkov
15
71 kgKeizer
16
72 kgNieve
17
62 kgBárta
18
75 kgNavarro
19
60 kgCoppel
20
64 kgBelda
21
53 kgIzagirre
22
60 kgQuintana
23
58 kgKessiakoff
24
61 kg
1
61 kgHivert
2
62 kgVan den Broeck
3
69 kgMollema
4
64 kgŠpilak
5
68 kgFarrar
6
73 kgDe Clercq
7
67 kgPonzi
8
63 kgRebellin
9
63 kgGretsch
10
69 kgClement
11
66 kgFuglsang
12
67 kgArmée
13
72 kgGesink
14
70 kgBelkov
15
71 kgKeizer
16
72 kgNieve
17
62 kgBárta
18
75 kgNavarro
19
60 kgCoppel
20
64 kgBelda
21
53 kgIzagirre
22
60 kgQuintana
23
58 kgKessiakoff
24
61 kg
Weight (KG) →
Result →
75
53
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | VALVERDE Alejandro | 61 |
2 | HIVERT Jonathan | 62 |
3 | VAN DEN BROECK Jurgen | 69 |
4 | MOLLEMA Bauke | 64 |
5 | ŠPILAK Simon | 68 |
6 | FARRAR Tyler | 73 |
7 | DE CLERCQ Bart | 67 |
8 | PONZI Simone | 63 |
9 | REBELLIN Davide | 63 |
10 | GRETSCH Patrick | 69 |
11 | CLEMENT Stef | 66 |
12 | FUGLSANG Jakob | 67 |
13 | ARMÉE Sander | 72 |
14 | GESINK Robert | 70 |
15 | BELKOV Maxim | 71 |
16 | KEIZER Martijn | 72 |
17 | NIEVE Mikel | 62 |
18 | BÁRTA Jan | 75 |
19 | NAVARRO Daniel | 60 |
20 | COPPEL Jérôme | 64 |
21 | BELDA David | 53 |
22 | IZAGIRRE Ion | 60 |
23 | QUINTANA Nairo | 58 |
24 | KESSIAKOFF Fredrik | 61 |