Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bouhanni
1
65 kgLobato
2
64 kgBennati
3
71 kgSwift
4
69 kgKreder
5
70 kgFelline
6
68 kgVan Lerberghe
7
83 kgVan der Sande
8
67 kgLaporte
9
76 kgGatto
10
67 kgVan Hoecke
11
78 kgHollenstein
12
80 kgReijnen
13
63 kgBattaglin
14
64 kgTanner
15
70 kgBusato
16
67 kgSanz
17
67 kgMoscon
18
71 kgGilbert
19
75 kgGroßschartner
20
64 kgSoupe
21
70 kgValverde
22
61 kg
1
65 kgLobato
2
64 kgBennati
3
71 kgSwift
4
69 kgKreder
5
70 kgFelline
6
68 kgVan Lerberghe
7
83 kgVan der Sande
8
67 kgLaporte
9
76 kgGatto
10
67 kgVan Hoecke
11
78 kgHollenstein
12
80 kgReijnen
13
63 kgBattaglin
14
64 kgTanner
15
70 kgBusato
16
67 kgSanz
17
67 kgMoscon
18
71 kgGilbert
19
75 kgGroßschartner
20
64 kgSoupe
21
70 kgValverde
22
61 kg
Weight (KG) →
Result →
83
61
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | BOUHANNI Nacer | 65 |
2 | LOBATO Juan José | 64 |
3 | BENNATI Daniele | 71 |
4 | SWIFT Ben | 69 |
5 | KREDER Raymond | 70 |
6 | FELLINE Fabio | 68 |
7 | VAN LERBERGHE Bert | 83 |
8 | VAN DER SANDE Tosh | 67 |
9 | LAPORTE Christophe | 76 |
10 | GATTO Oscar | 67 |
11 | VAN HOECKE Gijs | 78 |
12 | HOLLENSTEIN Reto | 80 |
13 | REIJNEN Kiel | 63 |
14 | BATTAGLIN Enrico | 64 |
15 | TANNER David | 70 |
16 | BUSATO Matteo | 67 |
17 | SANZ Enrique | 67 |
18 | MOSCON Gianni | 71 |
19 | GILBERT Philippe | 75 |
20 | GROßSCHARTNER Felix | 64 |
21 | SOUPE Geoffrey | 70 |
22 | VALVERDE Alejandro | 61 |