Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Fuglsang
1
67 kgTeuns
2
64 kgHaig
3
67 kgSerrano
4
65 kgLanda
5
61 kgLobato
6
64 kgIzagirre
7
60 kgBilbao
8
60 kgVenturini
9
60 kgSoler
10
68 kgHarper
11
67 kgPlanckaert
12
71 kgde la Cruz
13
66 kgVanhoucke
14
65 kgPasqualon
15
75 kgFernández
16
60 kgZeits
17
73 kgSimon
18
65 kgArmée
19
72 kgTolhoek
20
61 kgDillier
21
75 kgPedrero
22
60 kgBakelants
23
67 kg
1
67 kgTeuns
2
64 kgHaig
3
67 kgSerrano
4
65 kgLanda
5
61 kgLobato
6
64 kgIzagirre
7
60 kgBilbao
8
60 kgVenturini
9
60 kgSoler
10
68 kgHarper
11
67 kgPlanckaert
12
71 kgde la Cruz
13
66 kgVanhoucke
14
65 kgPasqualon
15
75 kgFernández
16
60 kgZeits
17
73 kgSimon
18
65 kgArmée
19
72 kgTolhoek
20
61 kgDillier
21
75 kgPedrero
22
60 kgBakelants
23
67 kg
Weight (KG) →
Result →
75
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | FUGLSANG Jakob | 67 |
2 | TEUNS Dylan | 64 |
3 | HAIG Jack | 67 |
4 | SERRANO Gonzalo | 65 |
5 | LANDA Mikel | 61 |
6 | LOBATO Juan José | 64 |
7 | IZAGIRRE Ion | 60 |
8 | BILBAO Pello | 60 |
9 | VENTURINI Clément | 60 |
10 | SOLER Marc | 68 |
11 | HARPER Chris | 67 |
12 | PLANCKAERT Edward | 71 |
13 | DE LA CRUZ David | 66 |
14 | VANHOUCKE Harm | 65 |
15 | PASQUALON Andrea | 75 |
16 | FERNÁNDEZ Rubén | 60 |
17 | ZEITS Andrey | 73 |
18 | SIMON Julien | 65 |
19 | ARMÉE Sander | 72 |
20 | TOLHOEK Antwan | 61 |
21 | DILLIER Silvan | 75 |
22 | PEDRERO Antonio | 60 |
23 | BAKELANTS Jan | 67 |