Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Hayter
1
70 kgSerrano
2
65 kgLópez
3
59 kgBystrøm
4
73 kgStannard
5
74 kgAular
6
65 kgImpey
7
72 kgSkujiņš
8
70 kgLastra
9
64 kgRodríguez
10
67 kgAmezqueta
11
63 kgTolhoek
12
61 kgCanola
13
66 kgCepeda
14
61 kgRodríguez
15
63 kgAdrià
16
64 kgParra
17
55 kgFisher-Black
18
69 kgMaté
19
68 kgGibbons
20
70 kgGregaard
21
66 kg
1
70 kgSerrano
2
65 kgLópez
3
59 kgBystrøm
4
73 kgStannard
5
74 kgAular
6
65 kgImpey
7
72 kgSkujiņš
8
70 kgLastra
9
64 kgRodríguez
10
67 kgAmezqueta
11
63 kgTolhoek
12
61 kgCanola
13
66 kgCepeda
14
61 kgRodríguez
15
63 kgAdrià
16
64 kgParra
17
55 kgFisher-Black
18
69 kgMaté
19
68 kgGibbons
20
70 kgGregaard
21
66 kg
Weight (KG) →
Result →
74
55
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | HAYTER Ethan | 70 |
2 | SERRANO Gonzalo | 65 |
3 | LÓPEZ Miguel Ángel | 59 |
4 | BYSTRØM Sven Erik | 73 |
5 | STANNARD Robert | 74 |
6 | AULAR Orluis | 65 |
7 | IMPEY Daryl | 72 |
8 | SKUJIŅŠ Toms | 70 |
9 | LASTRA Jonathan | 64 |
10 | RODRÍGUEZ Carlos | 67 |
11 | AMEZQUETA Julen | 63 |
12 | TOLHOEK Antwan | 61 |
13 | CANOLA Marco | 66 |
14 | CEPEDA Jefferson Alveiro | 61 |
15 | RODRÍGUEZ Óscar | 63 |
16 | ADRIÀ Roger | 64 |
17 | PARRA José Félix | 55 |
18 | FISHER-BLACK Finn | 69 |
19 | MATÉ Luis Ángel | 68 |
20 | GIBBONS Ryan | 70 |
21 | GREGAARD Jonas | 66 |