Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Pogačar
1
66 kgLanda
2
61 kgBuitrago
3
59 kgRodríguez
4
67 kgMas
5
61 kgGeoghegan Hart
6
65 kgCaruso
7
67 kgSivakov
8
70 kgHaig
9
67 kgRota
10
62 kgTeuns
11
64 kgMajka
12
62 kgCepeda
13
61 kgZimmermann
14
70 kgNarváez
15
65 kgWellens
16
71 kgKron
17
63 kgBennett
18
58 kgSchultz
19
68 kgSobrero
20
63 kg
1
66 kgLanda
2
61 kgBuitrago
3
59 kgRodríguez
4
67 kgMas
5
61 kgGeoghegan Hart
6
65 kgCaruso
7
67 kgSivakov
8
70 kgHaig
9
67 kgRota
10
62 kgTeuns
11
64 kgMajka
12
62 kgCepeda
13
61 kgZimmermann
14
70 kgNarváez
15
65 kgWellens
16
71 kgKron
17
63 kgBennett
18
58 kgSchultz
19
68 kgSobrero
20
63 kg
Weight (KG) →
Result →
71
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | POGAČAR Tadej | 66 |
2 | LANDA Mikel | 61 |
3 | BUITRAGO Santiago | 59 |
4 | RODRÍGUEZ Carlos | 67 |
5 | MAS Enric | 61 |
6 | GEOGHEGAN HART Tao | 65 |
7 | CARUSO Damiano | 67 |
8 | SIVAKOV Pavel | 70 |
9 | HAIG Jack | 67 |
10 | ROTA Lorenzo | 62 |
11 | TEUNS Dylan | 64 |
12 | MAJKA Rafał | 62 |
13 | CEPEDA Jefferson Alveiro | 61 |
14 | ZIMMERMANN Georg | 70 |
15 | NARVÁEZ Jhonatan | 65 |
16 | WELLENS Tim | 71 |
17 | KRON Andreas | 63 |
18 | BENNETT George | 58 |
19 | SCHULTZ Nick | 68 |
20 | SOBRERO Matteo | 63 |