Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Silva
1
64 kgSivakov
4
70 kgLeknessund
5
72 kgSoler
6
68 kgBrambilla
7
57 kgDouble
8
56 kgOkamika
9
70 kgMas
10
61 kgBerthet
11
68 kgLaurance
12
66 kgVan Gils
13
63 kgStaune-Mittet
14
67 kgWellens
16
71 kgBerhe
17
58 kgUriarte
18
67 kgPidcock
19
58 kgProdhomme
20
63 kgIribar
21
64 kgDelgado
22
53 kg
1
64 kgSivakov
4
70 kgLeknessund
5
72 kgSoler
6
68 kgBrambilla
7
57 kgDouble
8
56 kgOkamika
9
70 kgMas
10
61 kgBerthet
11
68 kgLaurance
12
66 kgVan Gils
13
63 kgStaune-Mittet
14
67 kgWellens
16
71 kgBerhe
17
58 kgUriarte
18
67 kgPidcock
19
58 kgProdhomme
20
63 kgIribar
21
64 kgDelgado
22
53 kg
Weight (KG) →
Result →
72
53
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | SILVA Guillermo Thomas | 64 |
4 | SIVAKOV Pavel | 70 |
5 | LEKNESSUND Andreas | 72 |
6 | SOLER Marc | 68 |
7 | BRAMBILLA Gianluca | 57 |
8 | DOUBLE Paul | 56 |
9 | OKAMIKA Ander | 70 |
10 | MAS Enric | 61 |
11 | BERTHET Clément | 68 |
12 | LAURANCE Axel | 66 |
13 | VAN GILS Maxim | 63 |
14 | STAUNE-MITTET Johannes | 67 |
16 | WELLENS Tim | 71 |
17 | BERHE Welay Hagos | 58 |
18 | URIARTE Diego | 67 |
19 | PIDCOCK Thomas | 58 |
20 | PRODHOMME Nicolas | 63 |
21 | IRIBAR Unai | 64 |
22 | DELGADO David | 53 |