Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 95
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Gretsch
2
69 kgDurán
13
70 kgRaimbekov
15
66 kgJanorschke
26
78 kgAlarcón
38
72 kgMalacarne
39
63 kgJanse van Rensburg
50
63 kgSmukulis
51
72 kgKvist
52
68 kgCiolek
57
75 kgDenifl
64
65 kgLudescher
65
72 kgKireyev
66
66 kgSteensen
75
65 kgTybor
78
72 kgDrucker
79
75 kgMora
95
65 kgTleubayev
115
70 kgStauff
120
82 kgGruzdev
127
78 kg
2
69 kgDurán
13
70 kgRaimbekov
15
66 kgJanorschke
26
78 kgAlarcón
38
72 kgMalacarne
39
63 kgJanse van Rensburg
50
63 kgSmukulis
51
72 kgKvist
52
68 kgCiolek
57
75 kgDenifl
64
65 kgLudescher
65
72 kgKireyev
66
66 kgSteensen
75
65 kgTybor
78
72 kgDrucker
79
75 kgMora
95
65 kgTleubayev
115
70 kgStauff
120
82 kgGruzdev
127
78 kg
Weight (KG) →
Result →
82
63
2
127
# | Rider | Weight (KG) |
---|---|---|
2 | GRETSCH Patrick | 69 |
13 | DURÁN Arkaitz | 70 |
15 | RAIMBEKOV Bolat | 66 |
26 | JANORSCHKE Grischa | 78 |
38 | ALARCÓN Raúl | 72 |
39 | MALACARNE Davide | 63 |
50 | JANSE VAN RENSBURG Jacques | 63 |
51 | SMUKULIS Gatis | 72 |
52 | KVIST Thomas Vedel | 68 |
57 | CIOLEK Gerald | 75 |
64 | DENIFL Stefan | 65 |
65 | LUDESCHER Philipp | 72 |
66 | KIREYEV Roman | 66 |
75 | STEENSEN André | 65 |
78 | TYBOR Patrik | 72 |
79 | DRUCKER Jempy | 75 |
95 | MORA Arturo | 65 |
115 | TLEUBAYEV Ruslan | 70 |
120 | STAUFF Andreas | 82 |
127 | GRUZDEV Dmitriy | 78 |