Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 47
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Ciolek
1
75 kgMalacarne
11
63 kgDurán
17
70 kgRaimbekov
18
66 kgJanorschke
22
78 kgMora
23
65 kgDrucker
26
75 kgDenifl
29
65 kgSmukulis
33
72 kgKireyev
48
66 kgGruzdev
51
78 kgGretsch
66
69 kgStauff
70
82 kgLudescher
77
72 kgAlarcón
84
72 kgTleubayev
88
70 kgTybor
93
72 kg
1
75 kgMalacarne
11
63 kgDurán
17
70 kgRaimbekov
18
66 kgJanorschke
22
78 kgMora
23
65 kgDrucker
26
75 kgDenifl
29
65 kgSmukulis
33
72 kgKireyev
48
66 kgGruzdev
51
78 kgGretsch
66
69 kgStauff
70
82 kgLudescher
77
72 kgAlarcón
84
72 kgTleubayev
88
70 kgTybor
93
72 kg
Weight (KG) →
Result →
82
63
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | CIOLEK Gerald | 75 |
11 | MALACARNE Davide | 63 |
17 | DURÁN Arkaitz | 70 |
18 | RAIMBEKOV Bolat | 66 |
22 | JANORSCHKE Grischa | 78 |
23 | MORA Arturo | 65 |
26 | DRUCKER Jempy | 75 |
29 | DENIFL Stefan | 65 |
33 | SMUKULIS Gatis | 72 |
48 | KIREYEV Roman | 66 |
51 | GRUZDEV Dmitriy | 78 |
66 | GRETSCH Patrick | 69 |
70 | STAUFF Andreas | 82 |
77 | LUDESCHER Philipp | 72 |
84 | ALARCÓN Raúl | 72 |
88 | TLEUBAYEV Ruslan | 70 |
93 | TYBOR Patrik | 72 |