Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 94
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Matzka
2
69 kgKittel
3
82 kgThurau
5
73 kgDegenkolb
10
82 kgVan Staeyen
11
62 kgSummerhill
12
70 kgTsatevich
18
64 kgKrizek
21
74 kgSchorn
24
72 kgHesselbarth
35
65 kgMahďar
43
61 kgSilin
44
61 kgSelander
49
72 kgVanendert
52
64 kgBrändle
53
80 kgPlanckaert
75
65 kgČanecký
79
72 kg
2
69 kgKittel
3
82 kgThurau
5
73 kgDegenkolb
10
82 kgVan Staeyen
11
62 kgSummerhill
12
70 kgTsatevich
18
64 kgKrizek
21
74 kgSchorn
24
72 kgHesselbarth
35
65 kgMahďar
43
61 kgSilin
44
61 kgSelander
49
72 kgVanendert
52
64 kgBrändle
53
80 kgPlanckaert
75
65 kgČanecký
79
72 kg
Weight (KG) →
Result →
82
61
2
79
# | Rider | Weight (KG) |
---|---|---|
2 | MATZKA Ralf | 69 |
3 | KITTEL Marcel | 82 |
5 | THURAU Björn | 73 |
10 | DEGENKOLB John | 82 |
11 | VAN STAEYEN Michael | 62 |
12 | SUMMERHILL Daniel | 70 |
18 | TSATEVICH Alexey | 64 |
21 | KRIZEK Matthias | 74 |
24 | SCHORN Daniel | 72 |
35 | HESSELBARTH David | 65 |
43 | MAHĎAR Martin | 61 |
44 | SILIN Egor | 61 |
49 | SELANDER Bjorn | 72 |
52 | VANENDERT Dennis | 64 |
53 | BRÄNDLE Matthias | 80 |
75 | PLANCKAERT Baptiste | 65 |
79 | ČANECKÝ Marek | 72 |