Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Silin
12
61 kgVan Staeyen
13
62 kgThurau
15
73 kgSelander
27
72 kgKrizek
29
74 kgSchorn
30
72 kgTsatevich
31
64 kgHesselbarth
33
65 kgSummerhill
41
70 kgMatzka
48
69 kgDegenkolb
49
82 kgKittel
52
82 kgVanendert
72
64 kgMahďar
76
61 kgBrändle
78
80 kgČanecký
90
72 kgPlanckaert
92
65 kg
12
61 kgVan Staeyen
13
62 kgThurau
15
73 kgSelander
27
72 kgKrizek
29
74 kgSchorn
30
72 kgTsatevich
31
64 kgHesselbarth
33
65 kgSummerhill
41
70 kgMatzka
48
69 kgDegenkolb
49
82 kgKittel
52
82 kgVanendert
72
64 kgMahďar
76
61 kgBrändle
78
80 kgČanecký
90
72 kgPlanckaert
92
65 kg
Weight (KG) →
Result →
82
61
12
92
# | Rider | Weight (KG) |
---|---|---|
12 | SILIN Egor | 61 |
13 | VAN STAEYEN Michael | 62 |
15 | THURAU Björn | 73 |
27 | SELANDER Bjorn | 72 |
29 | KRIZEK Matthias | 74 |
30 | SCHORN Daniel | 72 |
31 | TSATEVICH Alexey | 64 |
33 | HESSELBARTH David | 65 |
41 | SUMMERHILL Daniel | 70 |
48 | MATZKA Ralf | 69 |
49 | DEGENKOLB John | 82 |
52 | KITTEL Marcel | 82 |
72 | VANENDERT Dennis | 64 |
76 | MAHĎAR Martin | 61 |
78 | BRÄNDLE Matthias | 80 |
90 | ČANECKÝ Marek | 72 |
92 | PLANCKAERT Baptiste | 65 |