Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.8 * weight + 239
This means that on average for every extra kilogram weight a rider loses -2.8 positions in the result.
Kittel
1
82 kgDegenkolb
3
82 kgSilin
4
61 kgBrändle
12
80 kgSchorn
17
72 kgSelander
19
72 kgThurau
20
73 kgKrizek
23
74 kgVanendert
45
64 kgMatzka
47
69 kgHesselbarth
52
65 kgSummerhill
55
70 kgTsatevich
71
64 kgVan Staeyen
73
62 kgMahďar
86
61 kgPlanckaert
92
65 kgČanecký
102
72 kg
1
82 kgDegenkolb
3
82 kgSilin
4
61 kgBrändle
12
80 kgSchorn
17
72 kgSelander
19
72 kgThurau
20
73 kgKrizek
23
74 kgVanendert
45
64 kgMatzka
47
69 kgHesselbarth
52
65 kgSummerhill
55
70 kgTsatevich
71
64 kgVan Staeyen
73
62 kgMahďar
86
61 kgPlanckaert
92
65 kgČanecký
102
72 kg
Weight (KG) →
Result →
82
61
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
3 | DEGENKOLB John | 82 |
4 | SILIN Egor | 61 |
12 | BRÄNDLE Matthias | 80 |
17 | SCHORN Daniel | 72 |
19 | SELANDER Bjorn | 72 |
20 | THURAU Björn | 73 |
23 | KRIZEK Matthias | 74 |
45 | VANENDERT Dennis | 64 |
47 | MATZKA Ralf | 69 |
52 | HESSELBARTH David | 65 |
55 | SUMMERHILL Daniel | 70 |
71 | TSATEVICH Alexey | 64 |
73 | VAN STAEYEN Michael | 62 |
86 | MAHĎAR Martin | 61 |
92 | PLANCKAERT Baptiste | 65 |
102 | ČANECKÝ Marek | 72 |