Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 91
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Quaade
3
77 kgManninen
4
70 kgAaen Jørgensen
7
63 kgMunk
10
67 kgMoberg Jørgensen
11
73 kgSandersson
16
70 kgVeyhe
17
77 kgEikeland
18
68 kgMortensen
19
70 kgFolsach
23
81 kgVan Aken
36
56 kgAfewerki
38
63 kgGebremedhin
40
58.5 kgBergström Frisk
41
70 kgLudvigsson
44
71 kgRebellin
50
63 kgEriksson
52
64 kgAhlstrand
68
72 kg
3
77 kgManninen
4
70 kgAaen Jørgensen
7
63 kgMunk
10
67 kgMoberg Jørgensen
11
73 kgSandersson
16
70 kgVeyhe
17
77 kgEikeland
18
68 kgMortensen
19
70 kgFolsach
23
81 kgVan Aken
36
56 kgAfewerki
38
63 kgGebremedhin
40
58.5 kgBergström Frisk
41
70 kgLudvigsson
44
71 kgRebellin
50
63 kgEriksson
52
64 kgAhlstrand
68
72 kg
Weight (KG) →
Result →
81
56
3
68
# | Rider | Weight (KG) |
---|---|---|
3 | QUAADE Rasmus | 77 |
4 | MANNINEN Matti | 70 |
7 | AAEN JØRGENSEN Jonas | 63 |
10 | MUNK Steffen | 67 |
11 | MOBERG JØRGENSEN Christian | 73 |
16 | SANDERSSON Erik | 70 |
17 | VEYHE Torkil | 77 |
18 | EIKELAND Ken Levi | 68 |
19 | MORTENSEN Martin | 70 |
23 | FOLSACH Casper | 81 |
36 | VAN AKEN Matthias | 56 |
38 | AFEWERKI Elyas | 63 |
40 | GEBREMEDHIN Awet | 58.5 |
41 | BERGSTRÖM FRISK Hannes | 70 |
44 | LUDVIGSSON Fredrik | 71 |
50 | REBELLIN Davide | 63 |
52 | ERIKSSON Lucas | 64 |
68 | AHLSTRAND Jonas | 72 |