Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 82
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
van Dijk
4
74 kgKoerts
5
78 kgClarke
8
70 kgCurvers
9
73 kgHayman
10
78 kgde Jongh
15
76 kgScheirlinckx
20
67 kgKroon
22
67 kgD'Hollander
24
74 kgGardeyn
25
75 kgRenders
26
63 kgHegreberg
28
72 kgvan Hummel
33
64 kgCappelle
36
71 kgDuque
37
59 kgMetlushenko
39
82 kgDe Waele
40
71 kgde Groot
41
65 kgEngels
42
64 kgSentjens
43
75 kg
4
74 kgKoerts
5
78 kgClarke
8
70 kgCurvers
9
73 kgHayman
10
78 kgde Jongh
15
76 kgScheirlinckx
20
67 kgKroon
22
67 kgD'Hollander
24
74 kgGardeyn
25
75 kgRenders
26
63 kgHegreberg
28
72 kgvan Hummel
33
64 kgCappelle
36
71 kgDuque
37
59 kgMetlushenko
39
82 kgDe Waele
40
71 kgde Groot
41
65 kgEngels
42
64 kgSentjens
43
75 kg
Weight (KG) →
Result →
82
59
4
43
# | Rider | Weight (KG) |
---|---|---|
4 | VAN DIJK Stefan | 74 |
5 | KOERTS Jans | 78 |
8 | CLARKE Hilton | 70 |
9 | CURVERS Roy | 73 |
10 | HAYMAN Mathew | 78 |
15 | DE JONGH Steven | 76 |
20 | SCHEIRLINCKX Bert | 67 |
22 | KROON Karsten | 67 |
24 | D'HOLLANDER Glenn | 74 |
25 | GARDEYN Gorik | 75 |
26 | RENDERS Sven | 63 |
28 | HEGREBERG Morten | 72 |
33 | VAN HUMMEL Kenny | 64 |
36 | CAPPELLE Andy | 71 |
37 | DUQUE Leonardo Fabio | 59 |
39 | METLUSHENKO Yuri | 82 |
40 | DE WAELE Bert | 71 |
41 | DE GROOT Bram | 65 |
42 | ENGELS Addy | 64 |
43 | SENTJENS Roy | 75 |