Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Boonen
1
82 kgde Jongh
2
76 kgSteegmans
3
82 kgEeckhout
4
73 kgBrown
5
76 kgGasparotto
6
65 kgVierhouten
8
71 kgHunt
9
76 kgWeissinger
10
74 kgHovelijnck
11
75 kgPasamontes
12
72 kgMori
13
77 kgCooke
14
75 kgVerbist
15
73 kgWeylandt
16
72 kgHayman
17
78 kgCretskens
19
75 kgVerheyen
20
68 kgKnaven
21
68 kgHulsmans
22
75 kg
1
82 kgde Jongh
2
76 kgSteegmans
3
82 kgEeckhout
4
73 kgBrown
5
76 kgGasparotto
6
65 kgVierhouten
8
71 kgHunt
9
76 kgWeissinger
10
74 kgHovelijnck
11
75 kgPasamontes
12
72 kgMori
13
77 kgCooke
14
75 kgVerbist
15
73 kgWeylandt
16
72 kgHayman
17
78 kgCretskens
19
75 kgVerheyen
20
68 kgKnaven
21
68 kgHulsmans
22
75 kg
Weight (KG) →
Result →
82
65
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | DE JONGH Steven | 76 |
3 | STEEGMANS Gert | 82 |
4 | EECKHOUT Niko | 73 |
5 | BROWN Graeme Allen | 76 |
6 | GASPAROTTO Enrico | 65 |
8 | VIERHOUTEN Aart | 71 |
9 | HUNT Jeremy | 76 |
10 | WEISSINGER René | 74 |
11 | HOVELIJNCK Kurt | 75 |
12 | PASAMONTES Luis | 72 |
13 | MORI Massimiliano | 77 |
14 | COOKE Baden | 75 |
15 | VERBIST Evert | 73 |
16 | WEYLANDT Wouter | 72 |
17 | HAYMAN Mathew | 78 |
19 | CRETSKENS Wilfried | 75 |
20 | VERHEYEN Geert | 68 |
21 | KNAVEN Servais | 68 |
22 | HULSMANS Kevin | 75 |