Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -26.3 * weight + 2673
This means that on average for every extra kilogram weight a rider loses -26.3 positions in the result.
Elliott
1
76 kgHarmeling
5
76 kgPeeters
8
76 kgHolm Sørensen
990
77 kgDomínguez
990
67 kgPedersen
990
70 kgWeltz
990
65 kgDelgado
990
64 kgMejia
990
63 kgKelly
990
77 kgLlach
990
58 kgMujika
990
73 kgRipoll
990
66 kgHodge
990
74 kgMauri
990
68 kgScirea
990
80 kgAlonso
990
70 kg
1
76 kgHarmeling
5
76 kgPeeters
8
76 kgHolm Sørensen
990
77 kgDomínguez
990
67 kgPedersen
990
70 kgWeltz
990
65 kgDelgado
990
64 kgMejia
990
63 kgKelly
990
77 kgLlach
990
58 kgMujika
990
73 kgRipoll
990
66 kgHodge
990
74 kgMauri
990
68 kgScirea
990
80 kgAlonso
990
70 kg
Weight (KG) →
Result →
80
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ELLIOTT Malcolm | 76 |
5 | HARMELING Rob | 76 |
8 | PEETERS Wilfried | 76 |
990 | HOLM SØRENSEN Brian | 77 |
990 | DOMÍNGUEZ Manuel Jorge | 67 |
990 | PEDERSEN Atle | 70 |
990 | WELTZ Johnny | 65 |
990 | DELGADO Pedro | 64 |
990 | MEJIA Alvaro | 63 |
990 | KELLY Sean | 77 |
990 | LLACH Joaquin | 58 |
990 | MUJIKA Jokin | 73 |
990 | RIPOLL José Andrés | 66 |
990 | HODGE Stephen | 74 |
990 | MAURI Melchor | 68 |
990 | SCIREA Mario | 80 |
990 | ALONSO Marino | 70 |