Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.7 * weight - 189
This means that on average for every extra kilogram weight a rider loses 3.7 positions in the result.
Roche
1
74 kgLlach
3
58 kgChiappucci
4
67 kgHerrera
6
57 kgHeppner
14
69 kgDelgado
17
64 kgBruyneel
21
71 kgMurguialday
30
58 kgStephens
34
65 kgElliott
39
76 kgGotti
43
65 kgUgrumov
52
58 kgNevens
67
58 kgBaguet
68
67 kgFarazijn
70
69 kgAbduzhaparov
96
72 kgRipoll
97
66 kgPagnin
101
74 kgBomans
106
74 kgMoreau
120
77 kgMeinert-Nielsen
123
73 kgScirea
132
80 kgCabello
133
72 kg
1
74 kgLlach
3
58 kgChiappucci
4
67 kgHerrera
6
57 kgHeppner
14
69 kgDelgado
17
64 kgBruyneel
21
71 kgMurguialday
30
58 kgStephens
34
65 kgElliott
39
76 kgGotti
43
65 kgUgrumov
52
58 kgNevens
67
58 kgBaguet
68
67 kgFarazijn
70
69 kgAbduzhaparov
96
72 kgRipoll
97
66 kgPagnin
101
74 kgBomans
106
74 kgMoreau
120
77 kgMeinert-Nielsen
123
73 kgScirea
132
80 kgCabello
133
72 kg
Weight (KG) →
Result →
80
57
1
133
# | Rider | Weight (KG) |
---|---|---|
1 | ROCHE Stephen | 74 |
3 | LLACH Joaquin | 58 |
4 | CHIAPPUCCI Claudio | 67 |
6 | HERRERA Luis Alberto | 57 |
14 | HEPPNER Jens | 69 |
17 | DELGADO Pedro | 64 |
21 | BRUYNEEL Johan | 71 |
30 | MURGUIALDAY Javier | 58 |
34 | STEPHENS Neil | 65 |
39 | ELLIOTT Malcolm | 76 |
43 | GOTTI Ivan | 65 |
52 | UGRUMOV Piotr | 58 |
67 | NEVENS Jan | 58 |
68 | BAGUET Serge | 67 |
70 | FARAZIJN Peter | 69 |
96 | ABDUZHAPAROV Djamolidine | 72 |
97 | RIPOLL José Andrés | 66 |
101 | PAGNIN Roberto | 74 |
106 | BOMANS Carlo | 74 |
120 | MOREAU Francis | 77 |
123 | MEINERT-NIELSEN Peter | 73 |
132 | SCIREA Mario | 80 |
133 | CABELLO Francisco | 72 |