Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 44
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Frattini
1
60 kgZülle
2
72 kgGarmendia
3
68 kgOlano
5
70 kgCasagrande
6
64 kgEkimov
7
69 kgEscartín
10
61 kgGuerini
11
65 kgBerzin
12
64 kgTonkov
16
70 kgSerrano
17
63 kgRominger
18
65 kgMerckx
20
77 kgCuesta
21
62 kgCabello
23
72 kgGarcía Casas
24
63 kgEdo
25
64 kgPantani
26
58 kgJiménez
27
70 kgMejia
28
63 kgBruyneel
30
71 kgInduráin
72
76 kg
1
60 kgZülle
2
72 kgGarmendia
3
68 kgOlano
5
70 kgCasagrande
6
64 kgEkimov
7
69 kgEscartín
10
61 kgGuerini
11
65 kgBerzin
12
64 kgTonkov
16
70 kgSerrano
17
63 kgRominger
18
65 kgMerckx
20
77 kgCuesta
21
62 kgCabello
23
72 kgGarcía Casas
24
63 kgEdo
25
64 kgPantani
26
58 kgJiménez
27
70 kgMejia
28
63 kgBruyneel
30
71 kgInduráin
72
76 kg
Weight (KG) →
Result →
77
58
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | FRATTINI Francesco | 60 |
2 | ZÜLLE Alex | 72 |
3 | GARMENDIA Aitor | 68 |
5 | OLANO Abraham | 70 |
6 | CASAGRANDE Francesco | 64 |
7 | EKIMOV Viatcheslav | 69 |
10 | ESCARTÍN Fernando | 61 |
11 | GUERINI Giuseppe | 65 |
12 | BERZIN Evgeni | 64 |
16 | TONKOV Pavel | 70 |
17 | SERRANO Marcos Antonio | 63 |
18 | ROMINGER Tony | 65 |
20 | MERCKX Axel | 77 |
21 | CUESTA Iñigo | 62 |
23 | CABELLO Francisco | 72 |
24 | GARCÍA CASAS Félix Miguel | 63 |
25 | EDO Ángel | 64 |
26 | PANTANI Marco | 58 |
27 | JIMÉNEZ José María | 70 |
28 | MEJIA Alvaro | 63 |
30 | BRUYNEEL Johan | 71 |
72 | INDURÁIN Miguel | 76 |