Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Ekimov
1
69 kgSmetanine
2
69 kgBaffi
4
70 kgMartinello
5
71 kgHincapie
6
83 kgZülle
7
72 kgJärmann
9
73 kgNoè
10
65 kgCasagrande
11
64 kgO'Grady
12
73 kgMoreau
13
71 kgVoskamp
14
75 kgUllrich
18
73 kgHamilton
19
65 kgBruyneel
20
71 kgIvanov
21
73 kgPantani
23
58 kgBreukink
24
70 kg
1
69 kgSmetanine
2
69 kgBaffi
4
70 kgMartinello
5
71 kgHincapie
6
83 kgZülle
7
72 kgJärmann
9
73 kgNoè
10
65 kgCasagrande
11
64 kgO'Grady
12
73 kgMoreau
13
71 kgVoskamp
14
75 kgUllrich
18
73 kgHamilton
19
65 kgBruyneel
20
71 kgIvanov
21
73 kgPantani
23
58 kgBreukink
24
70 kg
Weight (KG) →
Result →
83
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | EKIMOV Viatcheslav | 69 |
2 | SMETANINE Serguei | 69 |
4 | BAFFI Adriano | 70 |
5 | MARTINELLO Silvio | 71 |
6 | HINCAPIE George | 83 |
7 | ZÜLLE Alex | 72 |
9 | JÄRMANN Rolf | 73 |
10 | NOÈ Andrea | 65 |
11 | CASAGRANDE Francesco | 64 |
12 | O'GRADY Stuart | 73 |
13 | MOREAU Christophe | 71 |
14 | VOSKAMP Bart | 75 |
18 | ULLRICH Jan | 73 |
19 | HAMILTON Tyler | 65 |
20 | BRUYNEEL Johan | 71 |
21 | IVANOV Sergei | 73 |
23 | PANTANI Marco | 58 |
24 | BREUKINK Erik | 70 |