Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Edo
1
64 kgZanette
2
82 kgGarzelli
3
62 kgAstarloa
5
61 kgWadecki
6
70 kgHamburger
7
58 kgBoogerd
8
62 kgMerckx
9
77 kgDi Luca
10
61 kgBölts
11
73 kgRodríguez
12
58 kgGonzález
13
69 kgMcEwen
14
67 kgRubiera
15
69 kgRatti
16
64 kgNiermann
18
64 kgMazzoleni
19
67 kgSmetanine
20
69 kg
1
64 kgZanette
2
82 kgGarzelli
3
62 kgAstarloa
5
61 kgWadecki
6
70 kgHamburger
7
58 kgBoogerd
8
62 kgMerckx
9
77 kgDi Luca
10
61 kgBölts
11
73 kgRodríguez
12
58 kgGonzález
13
69 kgMcEwen
14
67 kgRubiera
15
69 kgRatti
16
64 kgNiermann
18
64 kgMazzoleni
19
67 kgSmetanine
20
69 kg
Weight (KG) →
Result →
82
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | EDO Ángel | 64 |
2 | ZANETTE Denis | 82 |
3 | GARZELLI Stefano | 62 |
5 | ASTARLOA Igor | 61 |
6 | WADECKI Piotr | 70 |
7 | HAMBURGER Bo | 58 |
8 | BOOGERD Michael | 62 |
9 | MERCKX Axel | 77 |
10 | DI LUCA Danilo | 61 |
11 | BÖLTS Udo | 73 |
12 | RODRÍGUEZ Joaquim | 58 |
13 | GONZÁLEZ Aitor | 69 |
14 | MCEWEN Robbie | 67 |
15 | RUBIERA José Luis | 69 |
16 | RATTI Eddy | 64 |
18 | NIERMANN Grischa | 64 |
19 | MAZZOLENI Eddy | 67 |
20 | SMETANINE Serguei | 69 |